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GENERALIZED HILL CLIMBING ALGORITHMS

FOR DISCRETE OPTIMIZATION PROBLEMS

by

Alan W Johnson

Sheldon H. Jacobson, Chair

Industrial and Systems Engineering

(ABSTRACT)

Generalized hill climbing (GHC) algorithms are introduced, as a tool to address

difficult discrete optimization problems. Particular formulations of GHC algorithms

include simulated annealing (SA), local search, and threshold accepting (TA), among

others. A proof of convergence of GHC algorithms is presented, that relaxes the sufficient

conditions for the most general proof of convergence for stochastic search algorithms in

the literature (Anily and Federgruen [1987]).

Proofs of convergence for SA are based on the concept that deteriorating (hill

climbing) transitions between neighboring solutions are accepted by comparing a

deterministic function of both the solution change cost and a temperature parameter to a

uniform (0,1) random variable. GHC algorithms represent a more general model, whereby

deteriorating moves are accepted according to a general random variable.

Computational results are reported that illustrate relationships that exist between

the GHC algorithm's finite-time performance on three problems, and the general random

variable formulations used. The dissertation concludes with suggestions for further

research.



CHAPTER 1: INTRODUCTION

1.1 Motivation

Many discrete optimization (minimization) problems belong to a class of problems

that are difficult to solve, i.e., the class of NP-complete problems (Garey and Johnson

[1979, pg 13]). There is no known polynomial-time algorithm that can solve any problem

in this class. One classical example is the traveling salesman problem (Garey and Johnson

[1979, pg 4]). Given a list of J nodes, the problem is to find a Hamiltonian circuit of

minimum cost. (Note that a solution is an ordering of the J nodes, with total cost equal to

the sum of the costs of the corresponding (J + 1) arcs connecting the nodes. The total

number of solutions is of order (J - 1)!.)

Since the NP-complete class of problems contains many examples of practical

interest, heuristic methods have been developed that efficiently find near-optimal solutions.

Sangiovanni-Vincentelli [1991] separates heuristic methods into two conceptual classes: a

class that computes the best solution constructively starting from raw data, and a class

that iteratively improves upon an existing solution. Constructive methods tend to exploit

specific features of the problem to be solved and are therefore difficult to generalize,

while iterative methods are more flexible. Iterative methods all share the same basic

structure: starting from an initial solution, a sequence of solutions are generated until a

termination criterion is satisfied. Iterative algorithms are specified by the rules for
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generating and accepting new solutions, and by termination criteria. Greedy iterative

algorithms select only those solutions whose costs are less than or equal to the cost of the

incumbent solution, and therefore generally become trapped in local optima. One

particular greedy iterative algorithm is local search (Papadimitriou and Steiglitz [1982]).

Stochastic hill climbing algorithms have the ability to probabilistically accept candidate

solutions with higher cost than that of the incumbent solution, in an effort to escape local

optima.

1.2 Research Goals

This research explores how generalizing the solution acceptance function model of

stochastic hill climbing algorithms can improve their performance on hard discrete

optimization problems. A frequently used stochastic hill climbing algorithm for discrete

optimization is simulated annealing (SA) (Eglese [1990]). SA exploits the analogy of

discrete optimization to the physical annealing of crystalline solids, in which a solid is

cooled very slowly from some elevated temperature and thereby allowed to relax toward

its low energy states. The appeal of SA derives from its guarantee of asymptotic

convergence to a global extremum.

A key feature of stochastic hill climbing algorithms is their potential to escape local

optima. For example, proofs of convergence of SA are based on the concept that

deteriorating (hill climbing) transitions between solutions are probabilistically accepted by

comparing a deterministic function of both the solution change cost and a temperature

parameter to a uniform (0,1) random variable. This research examines a more general
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acceptance probability model, titled generalized hill climbing (GHC), where deteriorating

moves are accepted according to a general random variable.

One limitation of SA is that traditional SA convergence theory fixes the random

variable as an exponential function. Anily and Federgruen [1987] present an SA

convergence theory that addresses more general acceptance probability functions, but their

theory requires a restrictive sufficient condition that is very difficult to verify; furthermore,

they do not provide computational results to address whether different acceptance

probability functions would affect SA's finite-time performance (in terms of solution

quality versus algorithm execution time). In essence, no unifying convergence theory has

been developed that provides sufficient conditions on any acceptance probability

distribution function, for stochastic hill climbing algorithms to achieve asymptotic

convergence to a global extremum.

Another limitation of SA is that the convergence behavior is asymptotic. Thus

global optimality is obtained only after an infinite number of algorithm iterations.

Although the asymptotic behavior of SA has been extensively studied, it is the finite-time

behavior that interests practitioners (Romeo and Sangiovanni-Vincentelli [1991], Strenski

and Kirkpatrick [1991], and Tovey [1988]).

The contributions from this research focus on two areas: first, a new method of

proving convergence of stochastic hill climbing algorithms is presented, that relaxes the

sufficient conditions found in the literature. This result creates a large body of convergent

stochastic hill climbing algorithms where only SA existed previously. Second, tests of the
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performance of selected probability distributions for the general random variable on

specific problems are conducted. These tests empirically study which probability

distributions enhance the GHC algorithm's finite-time performance (in terms of solution

quality versus algorithm execution time) on these problems.

1.3 The Generalized Hill Climbing Algorithm

Define a discrete optimization minimization problem as a three-tuple (Q, NV,c) where:

1. fK is a finite solution space composed of card(f) elements, where card(K2)

is the cardinality of 0,

2. :2 -+ 2
- d(") is a neighborhood function of 9),

3. c: f -+ 91' is a non-negative objective function.

Generalized Hill Climbing (GHC) algorithms (depicted in pseudo-code in Figure 1.1) are

initialized with solution i E f, having objective function value ci. The total number of

Initialization: specify (0, 9V, c), and select initial solution i E 0
While stopping criterion not met:

Set the outer loop counter k = 0
While iteration k # K:

Set the inner loop counter m = 0
While m # M:

Generate j e N(i) according to probability g,., (k)

Calculate the change in objective function value Aj = c-

accept solutionj (i <-:j) if Rk (i,j) > A.j

m c:: m +1l
k <--=k + I

Figure 1.1. The Generalized Hill Climbing algorithm.
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outer loop iterations K; the total number of inner loop iterations M, a nonnegative random

variable Rk(i,j) such that i,j E Q, j c. A(i), and k c K; and a stopping criterion must

all be specified.

1.4 Research Questions

Two research questions are investigated.

1) Asymptotic Optimality: Given (at iteration k) a solution i Ef) and a neighbor

j c= 5(i), where solutionj is generated with probability gj (k), and the transition from

i toj occurs if

Rk (i,j) A

what are sufficient conditions on Rk (i,j) such that

lim Pr(solution j c {set of globally optimal solutions of 0)}) = 1 ? (1.1)
k-q.- \

2) Finite-Time Performance: Is there a connection between selected probability

distribution functions for Rk (i, j) and the finite-time performance (in terms of solution

quality versus algorithm execution time) of the GHC algorithm on a specified set of

problems? (1.2)
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CHAPTER 2: LITERATURE REVIEW

Chapter 2 reviews the probabilistic hill climbing algorithm literature. Section 2.1

addresses convergence properties and finite-time behavior of the simulated annealing

algorithm. Section 2.2 discusses the threshold accepting algorithm, while Section 2.3

addresses probabilistic tabu search, the noising method, and genetic algorithms.

2.1 Simulated Annealing

2.1.1 Overview

Simulated annealing (SA) is a local search algorithm with the capability to escape

from local optima. It is often used to solve nonconvex discrete optimization problems.

Four recent survey articles that provide a good overview of SA's theoretical development

and application are Eglese [1990], Fleischer [1995], Koulamas et al. [1994], and Romeo

and Sangiovanni-Vincentelli [1991]. Aarts and Korst [1989] and Laarhoven and Aarts

[1987] devote entire books to the subject. Fox [1995] shows that selected methods of

improving the finite-time performance of SA do not detract from its asymptotic

convergence properties. The SA algorithm is depicted in Figure 2.1.

This section reviews the basic SA algorithm, its convergence properties, and its

finite-time behavior. Note that although a substantial literature exists for the application of

SA to problems with continuous variables, this review focuses only on discrete problems.
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Initialization: specify (92, X, c), a temperature parameter tk, k = 0,1,...,
and select an initial solution i (
While stopping criterion not met:

Set the outer loop counter k = 0
While iteration k # K:

Set the inner loop counter m = 0
While m # M:

Generate j r= 9v(i) according to probability gij (k)

Calculate the change in objective function value Aj =cj - c

If A1j _0 0, then accept solutionj (i <-=J)

Else, generate a random number U - U(0,1)

If U < exp(-A,, / tk), then (i <=])
Else, (i <==/i)

m <==m+l
k<=k+l

Figure 2.1. The Simulated Annealing algorithm.

SA is so named because of its analogy to physical annealing with solids, in which a

crystalline solid is heated and then allowed to cool very slowly until it achieves its most

regular possible crystal lattice configuration (i.e., its minimum lattice energy state), and

thus is free of crystal defects. SA establishes the connection between this type of

thermodynamic behavior and the search for the global minimum of an objective function in

a discrete optimization problem; and further, it provides an algorithmic means for

exploiting the connection. SA is based on the Metropolis acceptance criterion (Metropolis

et al. [1953]) which models how a thermodynamic system moves from its current solution
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(state) to a candidate solution, in which the energy content is being minimized. The

probability of making such a move is

• ep-~ / tk) Au>0

Pr{Accept candidatej as next solution)= {p(. Aij <0 (2.1)

where 0 is a finite solution space, i, j c 0 are the current and candidate solutions of the

system, respectively, and tk is the temperature parameter at (outer loop) iteration k, such

that

tk > 0 for all k and lim tk = 0. (2.2)
k--*o

Let A Q =-c1 -c1 , where c, and c, denote the energies associated with solutions i and j,

respectively. The candidate solution j is chosen at random from among the set of

neighbors of solution i, defined by N(), and becomes the current solution, based on the

acceptance probability in (2.1). This acceptance probability is the basic element of the

search mechanism in SA. If the probability of generating a candidate solutionj from the

neighbors of solution i is g1j, (k), where

1:gj(k) = 1, for all i e 0, k = 1,2,... (2.3)
jEW(i)

then a nonnegative square stochastic matrix P(k) can be defined with transition

probabilities



gi'i (k) exp(-A i,i / tk) j c xV(i), j i

P0 (k) 0j -9),j i (2.4)
1 - j:Pil k

for all solutions i c K2, and all k = 1,2,... .These transition probabilities define an

inhomogeneous Markov chain (Romeo and Sangiovanni-Vincentelli [1991]). Note that

boldface type indicates matrix/vector notation, and all vectors are row vectors, unless

otherwise indicated.

The key characteristic of SA is that it provides a means of escaping from local

optima by allowing hill climbing moves (i.e., moves which may worsen the objective

function value). As the temperature parameter tk is decreased to zero, hill climbing

moves occur less frequently, and the solution distribution associated with the

inhomogeneous Markov chain converges to a form in which all the probability is

concentrated on the set of globally optimal solutions.

2.1.2 Homogeneous Markov Chain Theory

Convergence proofs are grouped into two approaches: homogeneous and

inhomogeneous. The homogeneous Markov chain approach (Aarts and Laarhoven

[1985], Faigle and Kern [1991], Granville et al. [1994], Lundy and Mees [1986], Mitra et

al. [1986], and Rossier et al. [1986]) assumes that each temperature tk is held constant for

a sufficient number of iterations m for the stochastic matrix P(k) to approach its stationary
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probability distribution ic(k). (Note that in the interest of simplifying notation as much as

possible, the inner loop index m is suppressed. However, the reader should interpret the

index k as the double index km, where a sequence of m = 1,2,..., M SA iterations occur

for each fixed k.) The existence of stationary distributions for each temperature is based

on the following theorem. (Note: to ensure that Theorem 2.1 is consistent with the SA

algorithm depicted in Figure 2.1, without loss of generality, let tk be a function only of

each outer loop iteration k, and let the respective number of inner loop iterations M and

outer loop iterations K each approach infinity).

Theorem 2.1: Let P1j(k) be the probability of goingfrom solution i to solutionj

in one step at iteration k, and let P"."(k) be the probability of going from solution i to

solution j in m steps. If a Markov chain is irreducible and aperiodic with finitely many

solutions, then limPj(i.)(k) = 7tj(k) exists for all i,j e and iterations k

Furthermore, 7tr (k) is the unique strictly positive solution of

x (k) = Z ,(k)P,(k),jor all j E, (2.5)
iEQ

and
1. (2.6)

Proof: Define Cinlar's [1975, pg 153] result as a function of each iteration k, and the

result follows. U
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Key requirements for the existence of stationary distributions and for convergence of the

sequence of nt(k) vectors include:

a) transition matrix irreducibility (for every finite iteration k, the transition matrix

assigns a path of nonzero probability between any two solutions ij c f),

b) aperiodicity (starting at solution j r 0, it is possible to return toj in any

number of inner-loop iterations m),

c) a stationary transition matrix probability distribution (which, when k goes to

infinity, is nonzero only at globally optimal solutions).

Note that all SA proofs of convergence in the literature that are based on

homogeneous Markov chain theory, either explicitly or implicitly require the sufficient

condition of reversibility (also called detailed balance) (Ross [1993, pg 172]), defined as

7, (k)Pj 1 (k) = 7r (k)Pj (k), for all i,j E Qf, and all iterations k. (2.7)

The reversibility condition is sufficient for a unique solution to exist for (2.5) and (2.6) at

each iteration k. Ross [1993, pg 177] shows that a necessary condition for reversibility is

multiplicativity (i.e., for any three solutions h,i,j E f such that c., c i c, and for all

iterations k,

ah~j(k,Ahj) = ah,(k,Ah,)a,(k,A,) (2.8)

where ah, (k, A j,) is the probability of accepting the transition from solution h to solution i

at iteration k). Reversibility is enforced by assuming conditions of symmetry on the
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solution generation probabilities and by either directly expressing the acceptance

probability as the exponential form, or by requiring the multiplicative condition (2.8).

The homogeneous proofs of convergence in the literature (implicitly or explicitly)

require condition (2.8) for the acceptance function, and then address the sufficient

conditions on the solution generation matrix. For example, the original homogeneous

proofs of convergence (Aarts and Laarhoven [1985] and Lundy and Mees [1986]) require

the multiplicative condition for the acceptance function, and then assume that the solution

generation function is symmetric and constant for all iterations k. Rossier et al. [1986]

partition the solution space into blocks composed of neighboring solutions of equal

objective function value, and then require only that the solution generation probabilities be

symmetric between the blocks. They express the acceptance function as a ratio of the

stationary distribution probabilities (discussed in Section 2.1.3). Faigle and Schrader

[1988] and Faigle and Kern [1991] use a graph theoretic approach to relax the solution

generation function symmetry condition. However, they require that the solution

acceptance probability function satisfies (2.8).

Granville et al. [1994] propose an SA procedure for filtering binary images, where

the acceptance function is based on the probability of the current solution, instead of the

change in objective function value as in basic SA. Their probability function for accepting

a candidate solution at (outer loop) iteration k is based on the ratio of the stationary

probability of the incumbent solution from iteration k - 1, versus the stationary probability
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of an initial solution (which is based on a maximum likelihood estimate). Their acceptance

probability is

t(k) = (qt,(O) / rtj(k- 1))(k)

where q = infti /sup n (q must also be estimated), and 4(k) is a slowly increasing
ie jEC

function. Therefore, the probability of a solution transition does not consider the objective

function value of the candidate solution. They provide a proof of asymptotic convergence

of this approach, but note that their proof methodology does not show that the set of

globally optimal solutions are asymptotically uniformly distributed.

2.1.3 Origins of the Simulated Annealing Homogeneous Theory

SA and its homogeneous convergence theory are based on the work of Metropolis

et al. [1953], who address problems in equilibrium statistical mechanics (Hammersley and

Handscomb [1964, pg 117]). To see the relationship, consider a system in thermal

equilibrium with its surroundings, in solution (state) S with energy F(S). The probability

density in phase space of the point representing S is proportional to

exp(-(F(S)), (2.9)

where B = (zt) -1, z is Boltzmann's constant, and t is the absolute temperature of the

surroundings. Therefore the proportion of time that the system spends in solution S is

proportional to (2.9) (Hammersley and Handscomb [1964]), and so the equilibrium

probability density for all S -Q is
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= exp(-(BF(S)) (2.10)

f exp(-(F(S))dS

The expectation of any valid solution functionf(S) is thus

EL/] f f(S)exp(-BF(S))dS (2.11)

f exp(-BF(S))dS

The problem is that for many solution functions, (2.11) cannot be evaluated analytically.

Hammersley and Handscomb [1964] note that one could theoretically use naive Monte

Carlo techniques to estimate the value of the two integrals in (2.11), but this fails in

practice because the exponential factor means that the significant portion of the integrals

are concentrated in a very small region of the phase space 0. The remedy is to use

importance sampling (Bratley, Fox, and Schrage [1987, chapter 2]), by generating

solutions with probability density (2.10). This approach would also seem to fail, because

of the integral in the denominator of (2.10). However, Metropolis et al. [1953] solve this

problem by first discretizing the solution space, such that the integrals in (2.10) and (2.11)

are replaced by summations over discrete solutions j c= 0. They then construct an

irreducible aperiodic Markov chain with transition probabilities P',j such that

Rt 2= 7c,Pj, for all j r= r, (2.12)

where
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exP(-BF)) for all j rfl. (2.13)1j= exp(-C(BF))'

Note that to compute the equilibrium distribution z, the denominator of (2.13) (a

normalizing constant) does not need to be calculated. Instead, the ratios 7t, / 7r need

only be computed and a transition matrix P defined that satisfies (2.12). Metropolis et al.

[1953] accomplish this by defining P as the product of symmetric solution generation

probabilities gij, and the equilibrium ratios 7r, / 7c, as

gi-j j / 7C if 7ci / 7c < lpj :

P .j = ij if 7t i/ni >_l'j ~j (2.14)

go, + Z i 1-(C C) i
7b < 74

where

g3, >0, Zgij =1, and gij = gj forall i,j rf. (2.15)
jen

The use of stationary probability ratios to define the solution acceptance probabilities,

combined with symmetric solution generation probabilities, enable Metropolis et al. [1953]

to use the reversibility condition (2.7) to show that (2.14) and (2.15) satisfy (2.12).

2.1.4 Limitations of the Reversibility Condition

Homogeneous proofs of convergence for SA become more difficult when the

reversibility condition is not met. Note that existence of a unique stationary distribution
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for each iteration k is easily shown by specifying that each transition matrix P(k) be

irreducible and aperiodic. On the other hand, it becomes very difficult to derive an explicit

closed-form expression for each stationary distribution 7t(k) that remains analytically

tractable as the problem's solution space becomes large. One can no longer use (2.7) to

describe each stationary distribution, because in general, the multiplicative condition is not

met. Instead, one must directly solve the system of equations (2.5) and (2.6). For

example, Davis [1991] attempts to obtain a closed-form expression for 4t(k) by using

Cramer's rule and rewriting (2.5) and (2.6) as

t(k)(I - P(k)) = 0 (2.16)

and

7t(k)l T =1, (2.17)

where boldface type indicates vector/matrix notation, I is the identity matrix, and 1 T is a

column vector of ones. Note that the card(f)) x card(fl) transition matrix P(k)

associated with (2.16) is of rank (card(2) - 1) (Cinlar [1975, pg 154). Hence by deleting

any one equation from (2.16), and substituting (2.17), the result is the set of card(fl)

linearly independent equations

t(k)(I - P(k)) = e (2.18)

where the square matrix (I - P(k)) is obtained by substituting the t' column of the

matrix (I - P(k)) for a column vector of ones. The vector e is a row vector of zeroes,

except for a one in the it position. Since (I - P(k)) is of full rank, then its determinant

(written as det (I - P(k))), is nonzero. Let (I - P(k))j be the same matrix as (I - P(k))
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except that the elements of the fh row of (I-P(k)) are replaced by the vector e.

Therefore, for all iterations k,

det(I - P(k))'
j)=det(I-P(k)) ' forall j f. (2.19)

Davis attempts to solve (2.19) for each j E fl via a multivariate Taylor series expansion of

each determinant, but is not able to derive a tractable result.

Anily and Federgruen [1987] use perturbation analysis techniques (see e.g., Meyer

[1980]) to prove convergence of a particular stochastic hill-climbing algorithm, by

bounding the deviations of the sequence of stationary distributions of the particular case

against the sequence of known stationary distributions corresponding to the SA algorithm.

In general, this convergence proof approach is only useful for a restrictive class of SA

algorithms, because the transition matrix condition number grows explosively as the

number of iterations k becomes large; this issue is addressed in Chapter 4.

Overall, the difficulty of explicitly expressing the stationary distributions for large

problem solution spaces, combined with problems of bounding the transition matrix

condition number for large k, suggest that in general it is very difficult to prove

asymptotic convergence of the SA algorithm by treating (2.5) and (2.6) as a linear algebra

problem.

2.1.5 Convergence Rates for the Homogeneous Approach

Lundy and Mees [1986] note that for each fixed outer loop k, convergence to the

solution equilibrium probability distribution vector 7c(k) (in terms of the Euclidean
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distance between p(,) (k) and 7t(k), as m -> oo) is geometric since the solution space is

finite, and the convergence factor is given by the second largest eigenvalue of the

transition matrix P(k). This result is based on a standard convergence theorem for

irreducible, aperiodic homogeneous Markov chains (see e.g., Cinlar [1975, pg 378]).

Note that the large solution space precludes practical calculation of the eigenvalues.

Lundy and Mees [1986] conjecture that when the temperature tk is near zero, the second

largest eigenvalue will be close to one for problems with local optima, and thus

convergence to the equilibrium distribution will be very slow. (Recall that the dominant

eigenvalue for P(k) is one, with algebraic multiplicity one (Isaacson and Madsen [1976, pg

125]).) Lundy and Mees [1986] use their conjecture to justify why SA should be initiated

with a relatively high temperature. For an overview of current methods for assessing

nonasymptotic rates of convergence for general homogeneous Markov chains, see

Rosenthal [1995].

Overall, the assumption of stationarity for each iteration k limits practical

application of homogeneous theory--Romeo and Sangiovanni-Vincentelli [1991] show

that if equilibrium (for a Markov chain that satisfies the reversibility condition) is reached

in a finite number of steps, then it is achieved in one step. Thus, Romeo and Sangiovanni-

Vincentelli [1991] conjecture that there is essentially no hope for the most-used versions

of SA to reach equilibrium in a finite number of iterations.
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2.1.6 Inhomogenous Markov Chain Theory

The second convergence approach (Anily and Federgruen [1987], Borkar [1992],

Connors and Kumar [1989], Gidas [1985], Hajek [1988], and Mitra et al. [1986]), is

based on inhomogeneous Markov chain theory. In this approach, the Markov chain need

not reach a stationary distribution (e.g., the SA inner loop need not be infinitely long) for

each k. On the other hand, an infinite sequence of (outer loop) iterations k must still be

examined, with the condition that the temperature parameter tk cools sufficiently slowly.

The proof given by Mitra et al. [1986] is based on satisfying the inhomogeneous Markov

chain conditions of weak and strong ergodicity (Isaacson and Madsen [1976], Seneta

[1981]). The proof requires four conditions:

a) The inhomogeneous SA Markov chain must be weakly ergodic (i.e.,

dependence on the initial solution vanishes in the limit).

b) An eigenvector 7r(k) with eigenvalue one must exist such that (2.5) and (2.6)

hold for every iteration k.

c) The Markov chain must be strongly ergodic (i.e., the Markov chain must be

weakly ergodic and the sequence of eigenvectors 71(k) must converge to a

limiting form), e.g.,

I k + 1)11 < 00.
k=O
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d) The sequence of eigenvectors must converge to a form where all probability

mass is concentrated on the set of globally optimal solutions opt ( .1° c fl,

such that min( 1 ). Hence,

lim c(k) = 7cop.
k-- o

(Note that weak and strong ergodicity are equivalent for homogeneous Markov chain

theory.)

Mitra et al. [1986] satisfy condition a) (weak ergodicity) by first forming a lower

bound on the probability of reaching any solution from any locally minimal solution, and

then showing that this bound does not approach zero too quickly. For example, they

define the lower bound for the SA transition probabilities (2.4) as

P7)(k) > wm exp(-mAL Itkm_1 )

where m is the number of transitions needed to reach any solution from any solution of

non-maximal objective function value, w > 0 is a lower bound on the one-step solution

generation probabilities, and AL is the maximum one-step increase in objective function

value between any two solutions. Mitra et al. [1986] show the Markov chain is weakly

ergodic if

Z"w ' exp(-mAL / tk _, )= o. (2.20)
k=k,

20



Therefore, weak ergodicity is obtained if the temperature tk is reduced sufficiently slowly

to satisfy (2.20). In general, the (infinite) sequence of temperatures {tk }, k = 1,2,...

needs to satisfy

tk> (2.21)
log(k)

where limtk = 0, 13 is a problem-dependent constant, and k is the number of iterations.

Mitra et al. [1986] show that conditions b), c), and d) are satisfied by using the

homogeneous Markov chain theory developed for the transition probabilities (2.4), and

assuming a condition of symmetry on the solution generation function.

Romeo and Sangiovanni-Vincentelli [1991] comment that while the logarithmic

cooling schedule (2.21) is a sufficient condition for the convergence, there are only a few

values of 13 which make the logarithmic rule also necessary. Furthermore, there exists a

unique choice of 13 which makes the logarithmic rule both necessary and sufficient for the

convergence of SA to the set of global optima. Hajek [1988] was the first to show that

the logarithmic cooling schedule (2.21) is both necessary and sufficient, by developing the

tightest bound for the parameter 13. He defines 13 to be greater than or equal to the depth

of the deepest local minimum which is not a global minimum, under a weak reversibility

assumption. Hajek defines a Markov chain to be weakly reversible if, for any pair of

solutions i,j E Q and for any nonnegative real number h, i is reachable at height h fromj

if and only ifj is reachable at height h from i. Note that Hajek does not attempt to satisfy
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the conditions of weak and strong ergodicity, but instead uses a more general probabilistic

approach to develop a lower bound on the probability of escaping local, but not global

optima. Hajek's necessary and sufficient conditions are substantiated by Connors and

Kumar [1989], who base their convergence proof on a concept they call orders of

recurrence,

B -sup x>O:exp(-x/tk)7ti(k)=oo }forall i Ef.
f k=0

They show that these orders of recurrence quantify the asymptotic behavior of each

solution's occupation probability. Their key result is that the SA inhomogeneous Markov

chain converges in a Cesaro sense to the set of solutions having the largest recurrence

orders. Borkar [1992] improves on Connors and Kumar's [1989] convergence result by

using a convergence/oscillation dichotomy result for martingales. Tsitsiklis [1989] uses

bounds and estimates for singularly perturbed, approximately stationary Markov chains to

develop a convergence theory that subsumes Hajek's [1988] condition of weak

reversibility. (Note that Tsitsiklis [1989] defines N(h) c as the set of all local minima

(in terms of objective function value) of depth h + 1 or more. Hence 13 is the smallest h

such that all local (but not global) minima have depth h or less. Tsitsiklis [1989]

conjectures that without some form of reversibility, there will exist no h such that the

global optima are contained in the set of local optima.) Note that Chiang and Chow

[1988], [1994], Borkar [1992], Connors and Kumar [1989], Hajek [1988], and Mitra et
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al. [1986] all require (either explicitly or implicitly) the multiplicative condition (2.8) for

their proofs of convergence.

Anily and Federgruen [1987] present a proof of convergence of SA with more

general acceptance probability functions. Using inhomogeneous Markov chain theory,

they prove convergence under the following necessary and sufficient conditions:

a) The acceptance probability function must, for any iteration k, allow any hill

climbing transition to occur with positive probability.

b) The acceptance probability function must be bounded and asymptotically

monotone, with limit zero for hill climbing solution transitions.

c) In the limit, the stationary probability distribution must have zero probability

mass for every non-globally optimal solution.

d) The probability of escaping from any locally (but not globally) optimal solution

must not approach zero too quickly.

Anily and Federgruen [1987] use condition c) to relax the acceptance function

multiplicative condition (2.8). However, in practice condition c) would be very difficult to

check without assuming that (2.8) holds, for the reasons discussed in Section 2.1.4.

Condition d) provides the necessary condition for the rate that the probability of hill

climbing transitions approaches zero. Condition d) is expressed quantitatively as follows:

let tk be specified by (2.2), and define the minimum one-step acceptance probability as
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a(tk) = min a,y(tk).
j~ff(i)

Define the set of local optima Lc such that ieL::c1 _cj forallje(SV(i)rn ),

and let

Zf~k ) =max aj.y tk).
ir.L,
jE-N(i)\L

Finally, let any solution j E fl be reachable from any solution i E fl in q transitions or

less. Then if (non-globally) locally optimal solutions exist, and

= , (2.22)
k=1

and conditions a), b), and c) hold, then the SA algorithm will asymptotically converge to

the set of global optima, with probability one. However, if (non-globally) locally optimal

solutions exist and

"O~ k ) < oo, (2.23)
k=1

then the probability of each solution is asymptotically dependent upon the initial solution,

and therefore the SA algorithm will not always converge to the set of global optima with

probability one.

The inhomogeneous proof concept is stronger than the homogeneous approach in

that it provides necessary conditions for the rate of convergence, but its asymptotic nature

suggests that practical implementation is infeasible. Romeo and Sangiovanni-Vincentelli
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[1991] note that "there is no reason to believe that truncating the logarithmic temperature

sequence would yield a good configuration, since the tail of the sequence is the essential

ingredient in the proof." In addition, the logarithmic cooling schedule dictates a very slow

rate of convergence. Hence most recent work has focused on methods of improving SA's

finite-time behavior and modifying or blending the algorithm with other search methods

such as genetic algorithms (Liepins and Hilliard [1989]), tabu search (Glover [1994]), or

both (Fox [1993]).

2.1.7 Finite-Time Behavior

Mitra et al. [1986] were the first to present a bound on the distance of the actual

solution probability distribution from the optimal distribution after a finite number of

iterations. They found that for a large number of iterations k, the Ll-norm of the

difference of the current probability distribution from the optimal distribution is

O(1l/ kmn(b'd)), where b and d are values characteristic of the problem instance. The

values b and d are themselves functions of several parameters that describe the solution

space topology, including the connectivity of the graph of the Markov chain, the maximum

one-step hill climb between neighboring solutions, the cooling schedule, and on other

parameters that are themselves functions of both solution objective function values and

connectivity between solutions.

Implementation Issues: Implementation of SA follows two paths--that of

specifying problem-specific choices (neighborhood, objective function, and constraints),
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and that of specifying generic choices (generation and acceptance probability functions,

and the cooling schedule) (Eglese [1990]). The principal shortcoming of SA is that it

often requires extensive computer time. Implementation work generally strives to retain

SA's asymptotic convergence character, but at reduced computer run-time. The methods

discussed here are mostly heuristic.

Problem-Specific Choices:

Neighborhoods: A key problem-specific choice concerns the neighborhood

definition. SA's efficiency appears to be influenced by the neighborhood structure used

(Moscato [1993]). The choice of neighborhood serves to enforce a topology--Eglese

[1990] reports that "a neighborhood structure which imposes a 'smooth' topology where

the local minima are shallow is preferred to a bumpy' topology where there are many deep

local minima." Solla, Sorkin and White [1986] report similar conclusions, as does

Fleischer and Jacobson [1996]. This makes intuitive sense, and it supports Hajek's results,

which show that asymptotic convergence to the set of global optima depends on the depth

of the local minima.

Another factor is neighborhood size. No theoretical results are available, other

than the necessity of reachability (in a finite number of steps) from any solution to any

other solution. Cheh et al. [1991] report that small neighborhoods are best, while Ogbu

and Smith [1990] provide evidence that larger neighborhoods perform better than smaller

neighborhoods. Goldstein and Waterman [1988] conjecture that if the neighborhood size
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is small compared to the total solution space cardinality, then the Markov chain cannot

move around the solution space fast enough to find the minimum in a reasonable time. On

the other hand, a very large neighborhood has the algorithm merely sampling randomly

from a large portion of the solution space, and thus unable to focus on specific areas of the

solution space. It is reasonable to believe that neighborhood size is heavily problem-

specific, such that problems whose topology smoothness is relatively insensitive to

different neighborhood definitions, may benefit from larger neighborhood sizes.

Fleischer [1994] and Fleischer and Jacobson [1996] use information theoretic

concepts to show that the neighborhood structure can affect the information rate or total

uncertainty associated with SA. Fleischer [1994] shows that SA tends to perform better

as the entropy level of the associated Markov chain increases, and thus conjectures that an

entropy measure could be useful for predicting when SA would perform well on a given

problem. However, efficient ways of estimating the entropy are needed to make the

concept practical.

A final issue on neighborhood definition addresses the solution space itself.

Chardaire et al. [1995] propose a method for addressing 0-1 optimization problems, in

which the solution space is progressively reduced by fixing the value of strongly persistent

variables (which have the same value in all optimal solutions). They isolate the persistent

variables during SA's execution by periodically estimating the expectation of the random

variable (a vector of binary elements) that describes the current solution, and fixing the

value of those elements in the random variable that meet threshold criteria.
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Objective Functions: Another problem-specific choice involves the objective

function specification. Stem [1992] recommends a heuristic temperature-dependent

penalty function as a substitute for the actual objective function for problems where low

cost solutions have neighbors of much higher cost, or in cases of degeneracy (i.e., large

neighborhoods of solutions of equal, but high costs). The original objective function

surfaces, as the penalty and the temperature are gradually reduced to zero. One speed-up

technique is to evaluate only the difference in objective functions, A, instead of

calculating both c, and cj. Tovey [1988] suggests several methods of approximating A,,

by using surrogate functions (faster to evaluate than A,j, but not as accurate)

probabilistically for cases when evaluation of A,j is expensive. He calls this technique the

surrogate function swindle.

Straub et al. [1995] improve SA's performance on problems in chemical physics by

using the classical density distribution instead of the molecular dynamics of single point

particles to describe the potential energy landscape. Ma and Straub [1994] report that this

has the effect of smoothing the energy landscape by reducing the number and depth of

local minima.

Yan and Mukai [1992] consider the case when a closed-form formula for the

objective function is not available. They use a probabilistic simulation to generate a

sample objective function value for an input solution, and then accept the solution if the

sample objective function value falls within a predetermined bound. They provide a proof
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of asymptotic convergence by extrapolating the convergence proofs for SA, and analyze

the rate of convergence.

SM Generic Choices:

Generation Probability Functions: Generation probability functions are usually

chosen as a uniform distribution with probabilities proportional to the size of the

neighborhood. The generation probability function is usually not temperature-dependent.

Fox [1993] suggests that instead of blindly generating neighbors uniformly, adopt an

intelligent generation mechanism that modifies the neighborhood and its probability

distribution to accommodate search intensification or diversification, in the spirit of the

tabu search heuristic. Fox notes that SA convergence theory does not preclude this idea.

Tovey [1988] suggests an approach with a similar effect--he calls it the neighborhood

prejudice swindle.

Acceptance Probability Functions: The literature shows considerable experimen-

tation with acceptance probability functions for hill climbing transitions. The most popular

is the exponential form (2.1).

Ogbu and Smith [1990] consider replacing the basic SA acceptance function

a,, (k,,,) with a geometrically decreasing form that is independent of the change in

objective function value. They adopt a probabilistic-exhaustive heuristic technique in

which randomly chosen neighbors of a solution are examined and all solutions that are

accepted are noted, but only the last solution accepted becomes the new incumbent. Their

29



hope is that this scheme will explore a more broad area of the solution space of a problem.

Their acceptance probability function is defined for all solutions i,j = 9 and for k =

1,2,..., Kas

a,.(k) = a(k)=(1)xt-I if c' >c,
otherwise

where a(1) is the initial acceptance probability value, x (<1) is the reducing factor, and K is

the number of stages (equivalent to a temperature cooling schedule). They experimented

with this method (and a neighborhood of large cardinality) on a permutation flowshop

problem, and report that their approach found comparable solutions to the basic SA

algorithm in one-third the time.

Cooling Schedules: An SA cooling schedule is defined by an initial temperature, a

schedule for reducing temperature, and a stopping criterion. Romeo and Sangiovanni-

Vincentelli [1991] note that an effective schedule is essential to reducing the amount of

time required by the algorithm. Therefore much of the literature (Cardoso et al. [1994],

Fox and Heine [1993]) is devoted to this topic.

Homogeneous SA convergence theory is often used to design good cooling

schedules: start with an initial temperature to for which a good approximation of the

stationary distribution 7r(to) is quickly reached. Reduce to by an amount 8(t) small

enough such that 7r(t 0 ) is a good starting point to approximate n(t0 - 8(t)). Fix the

temperature at a constant value during the iterations needed for the solution distribution to
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approximate x(t0 - 8(t)). Repeat the above process of cooling and iterating until no

further improvement seems possible (Romeo and Sangiovanni-Vincentelli [1991]).

Cooling schedules are grouped into two classes: static schedules, which must be

completely specified before the algorithm begins; and adaptive schedules, which adjust the

temperature's rate of decrease from information obtained during the algorithm's execution.

Cooling schedules are almost always heuristic; they seek to balance moderate execution

time with SA's dependence on asymptotic behavior.

Strenski and Kirkpatrick [1991] present an exact (non-heuristic) characterization

of finite-length annealing schedules. They consider extremely small problems that

represent features (local optima and smooth/hilly topologies), and solve for solution

probabilities after a finite number of iterations. They find that optimal cooling schedules

are not monotone decreasing in temperature. Another result is that, for their test problem

(a white noise surface), geometric and linear annealing schedules perform better than

inverse logarithmic schedules, when sufficient computing effort is allowed. Their

experiments do not show measurable performance differences between linear and

geometric schedules. They also find that geometric schedules don't suffer seriously when

initial temperatures are set too high. Their technique does not allow simulating adaptive

schedules, but they do check some of the underlying assumptions. Their results show that

the even the most robust adaptive schedule "produces annealing trajectories which are

never in equilibrium" (Strenski and Kirkpatrick [1991]). However, they also conclude that
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the transition acceptance rate is not sensitive to the degree of closeness to an equilibrium

distribution.

Christoph and Hoffiann [1993] also attempt to characterize optimal annealing

schedules. They derive a relationship between a finite sequence of optimal temperature

values and the number of iterations at each respective temperature for several small test

problems to reach optimality (minimal mean final energy). They find that this scaling

behavior is of the form

x. =:anv-b. (2.24)

where a and b are scaling coefficients, x. =e - l k is referred to as temperature, v is the

number of iterations at temperature x , and n is the number of times the temperature x, is

reduced. Their approach is to solve for the coefficients a and b based on known

temperature and iteration parameter values for an optimal schedule for a few total

annealing steps, and then use (2.24) to predict the optimal annealing schedule for

intermediate times. They make no suggestions on how to efficiently solve for the

necessary optimal schedules for a (typically large) problem instance.

Romeo and Sangiovanni-Vincentelli [1991] conclude that the theoretical results

obtained thus far have not been able to explain why SA is so successful even when wild

static annealing schedule heuristics are used. They conjecture that the neighborhood and

the corresponding topology of the objective function are responsible for the behavior of

the algorithm.
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2.2 Threshold Accepting

Questioning the very need for a randomized acceptance function, Dueck and

Scheuer [1990], and independently, Moscato and Fontanari [1990] propose the concept of

threshold accepting (TA), where the acceptance function is defined as

I if Q~ Ai,a,,(k,A,,j) =, 1  ."Q >a

{ ' 0 otherwise

where Qk is the threshold value at iteration k. Qk is usually defined as a deterministic,

nonincreasing step function. Dueck and Scheuer [1990] report dramatic improvements in

traveling salesman problem solution quality and algorithm run-time over basic SA.

Moscato and Fontanari [1990] report more conservative results--they conjecture that SA's

probabilistic acceptance function does not play a major role in the search for near-optimal

solutions.

Althofer and Koschnick [1991] develop a convergence theory for threshold

accepting based on the concept that SA belongs to the convex hull of TA. Their idea is

that (for a finite Qk threshold sequence) there can exist only finitely many TA transition

matrices; but SA can have infinitely many transition matrices because of the real-valued

nature of the temperature at each iteration. However, every SA transition matrix for a

given problem can be represented as a convex combination of the finitely many TA

transition matrices. Althofer and Koschnick [1991] are unable to prove that TA will
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asymptotically reach a global minimum, but they do prove the existence of threshold

schedules that provide convergence to within an s-neighborhood of the optimal solutions.

Hu et al. [1995] modify TA to include a non-monotonic, self-tuning threshold

schedule in the hope of improving finite-time performance. They allow the threshold

Qk to change dynamically up or down, based on the perceived likelihood of being near a

local minimum. This is accomplished by using a principle they call dwindling expectation-

-when the algorithm fails to move to neighboring solutions, the threshold Qk is gradually

increased, in the hope of eventually escaping a local optimum. Conversely, when solution

transitions are successful, the threshold is reduced, in order to explore local optima. Their

experimental results on two traveling salesman problems showed that their algorithm

outperformed TA in terms of finding good solutions earlier in the optimization process.

TA's greatest values are its ease of implementation and its generally faster

execution time than SA, due to the reduced computational effort from avoiding

acceptance probability calculations and generation of random numbers (Moscato and

Fontanari [1990]). Compared to SA, relatively few TA applications are reported in the

literature (Lin et al. [1995], Scheermesser and Bryngdahl [1995], and Nissen and Paul

[1995]).
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2.3 Other Stochastic Approaches

2.3.1 Probabilistic Tabu Search

Tabu search (Glover [1994]) is a general framework for a variety of iterative local

search strategies for discrete optimization. Tabu search (TS) uses the concept of memory

by controlling the algorithm's execution via a dynamic list of forbidden moves. This

allows the TS algorithm to intensify or diversify its search of a given (n, Xc) problem's

solution space as necessary, in an effort to avoid entrapment in local optima. Note that a

criticism of SA is that it is completely memoryless, i.e., SA disregards all historical

information gathered during the algorithm's execution. On the other hand, no proofs of

convergence exist in the literature, for the general TS algorithm proposed by Glover.

Therefore, Faigle and Kern [1992] propose a particular TS algorithm they call

probabilistic tabu search, which attempts to capitalize on both the asymptotic optimality

of SA and the memory feature of TS. In probabilistic TS, the probabilities of generating

and accepting each candidate solution are set as functions of both a temperature parameter

(as in SA) and information gained in previous iterations. Faigle and Kern are then able to

prove asymptotic convergence of their particular TS algorithm, by using methods

developed for SA (Faigle and Kern [1991]).

2.3.2 Random Noise

Charon and Hudry [1993] advocate a simple descent algorithm they call the

Noising Method The algorithm first perturbs the solution space by adding random noise

to the problem's objective function values. The noise gradually reduced to zero during the
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algorithm's execution, allowing the original problem structure to reappear. Charon and

Hudry provide computational results, but do not prove that the algorithm will

asymptotically converge to the set of globally optimal solutions.

Storer et al. [1992] propose an optimization strategy for sequencing problems, by

integrating fast, problem-specific heuristics with local search. Their key contribution is to

base the definition of the search neighborhood on a heuristic problem pair (h, p), where h

is a fast, known, problem-specific heuristic and p represents the problem data. By

perturbing the heuristic, the problem, or both, a neighborhood of solutions is developed.

This neighborhood then forms the basis for local search. Their hope is that the

perturbations will cluster good solutions close together, thus making it easier to perform

local search.

2.3.3 Genetic Algorithms

Genetic algorithms (Liepins and I-illiard [1989]) emulate the evolutionary behavior

of biological systems. They generate a sequence of populations of candidate solutions to

the underlying optimization problem by using a set of genetically inspired stochastic

solution transition operators to transform each population of candidate solutions into a

descendent population. The three most popular transition operators are reproduction,

cross-over, and mutation (Davis [1991]). Davis [1991] and Rudolph [1994] attempt to

use homogeneous finite Markov chain techniques to prove convergence of genetic

algorithms, but are unable to develop a theory comparable in scope to that of SA.
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CHAPTER 3: GENERALIZED HILL CLIMBING
CONVERGENCE BASED ON

REVERSIBLE MARKOV CHAIN THEORY

Chapter 3 provides a proof of convergence, and examples, for a class of GHC al-

gorithms. When the objective function value of a globally optimal solution is known (and

the goal is to identify an associated optimal solution), then the solution acceptance prob-

ability for all i,j c K can be expressed as a ratio of acceptance probabilities involving the

globally optimal solution. This enables the proof of convergence to use reversible homo-

geneous Markov chain theory.

3.1 Generalized Hill Climbing Class Description

Consider a class of GHC algorithms where, for all i,j = Q and opt E W"o, the solu-

tion acceptance probabilities are defined as

I Pr(R' (optI) > A°Pt0 j) (.
Pr(R, 0ij)> !Ai.j)-min 1, (3.1)ti~

where Rk(opt, i) and Rk(opt,j) are random variables. The elements of the transition

matrix P(k) are defined as

gj.j(k)Pr(RQ(,j)> A..) for all i , j EN(i), j i
P,(k)= I- EP,1(k) j=i (3.2)

0 otherwise,

and the solution generation probabilities g,, (k) satisfy
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-"gi'i (k) = 1. (3.3)

Note that from (3.1), this class of GHC algorithms requires that the globally optimal ob-

jective function value, co., be known.

3.2 Proof of Convergence

Theorem 3.1 provides sufficient conditions on this class of GHC algorithms for the

existence of a unique stationary distribution for each iteration k. Theorem 3.2 provides

sufficient conditions for the sequence of stationary distributions ic(k) to converge to the

set of globally optimal solutions.

Theorem 3.1: Let (R)Y, c) denote an instance of a discrete optimization prob-

lem. Let each GHC transition probability Pi, (k) be defined by (3.2), where the accep-

tance probabilities are defined by (3.1). Let the generation probabilities g1, (k) satisfy

(3.3) and the conditions

(a) for all i,j E fl and all iterations k, there exists an integer d > 1 and a corre-

sponding sequence of solutions lol",12,...,1*"d ¢ with lo = i,ld = j, and

,(k) > 0, n = 0,1,...,d - 1,

(b) for all i,j ( 92, gi, (k) = gj' (k), and g,, (k) is independent of k

(i.e., g,,(k) = gj,(k) = g, = gj.).

Moreover, let the acceptance probabilities satisfy

(c) Pr(Rk (i,j) > A i) >0 for all i,j G ( and all iterations k.
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Then the stationary distribution for all i E f, and for each outer loop iteration k, is

Pr(R,(opt,i) > Ao0 )

k : Pr(k (opt, n) Ao : ) (3.4)

Proof: The irreducibility and aperiodicity conditions of Theorem 2.1 are first shown to be

satisfied. Then (3.1), (3.2), and (3.4) are shown to satisfy the reversibility condition (2.7).

Irreducibility: From condition (a), the matrix corresponding to the solution gen-

eration probabilities must assign a path of positive probability between any two solutions

i,j c fl. Furthermore, condition (c) requires that the acceptance probability for hill

climbing moves between all solutions be strictly positive for all finite iterations k. There-

fore, conditions (a) and (c) together imply that all solutions communicate, which is an

equivalent definition of irreducibility (Ross [1993, pg. 144]).

Aperiodicity (From Aarts and Korst [1989, pg. 39]): Let i,j cfl with q <cj and

gij > 0. By condition (a), such a pair always exists provided fl # opt. Without loss of

generality, assume that for at least one solution n E 9V*(i), Pr(Rk (i, n) > A i.) < 1 (without

this assumption, then it is possible that for some iteration k, all hill climbing transitions

would be accepted with probability one, which represents pure Monte Carlo search

(Hammersley and Handscomb [1964]). Note that the opposite extreme would occur for

iterations k if no hill climbing transitions are accepted, which represents local search

(Papadimitriou and Steiglitz [1982]); hill climbing search algorithms are designed to op-

erate between these two extremes). Therefore
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Pjjk=1 -g, Pr(R(i,) A j P(k'.n A_

neal nnii

n~~nea nnii

=0

which is the criterion for aperiodicity (Cinlar [1975, pg. 126]).

To complete the proof, reversibility (2.7) is shown to be satisfied. Substituting (3. 1),

(3.2), and (3.4) into (2.7) leads to

Pr(Rk(opt, i) ! A 0Pt) Pj' (k) = Pr(k(9Ptj) !A opt. Pj(k). (3.5)

neQC neD

Consider any two solutions Q~ c= R) i 1, and examine reversibility under the following

cases:

Case 1: If Pr(k(opt, j) :Atj < Pr(Rk~opt, i) !AP' then (3.5) can be rewritten as

Pr(Rk(optji) ! A01,t3) ___________ (k MR Ot )AOjk(pt, j) 2! Aopt j) g k

ZP kot )2 A O,, Pr(kk.(Op, i) ) _P' Pr(k (opt ) ,,(k
flGOQ n(fl

where reversibility holds, from condition (b).

Case 2: If Pr(k(opt, j) 2 A,,Pt 1 ) =Pr(Rk(optji)2 A,,, then (3.5) can be rewritten as
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Pr(Rk, (opt,i) A ,r(k(opt, j)>- Aopt.)Pr(R+ (opt, n) > Ao.,..)g 34(k)= P pr(Rk (opt, n) > Aop,,.)

By condition (b), reversibility again holds.

Case 3: If Pr(Rk (opt,j) >_ Aoj)> Pr(Rk (opt, i) >_ A,, then by the min function in

(3.1), this reduces to Case 2. U

Theorem 3.2 proves convergence of the stationary distributions 7c(k) to the set of glob-

ally optimal solutions.

Theorem 3.2: Under the conditions and assumptions of Theorem 3.1, if, for all

Q df and for all iterations k,

ci < cj =:> lim Pr(p,(i, j) >! Aij) = 0 (3.6)

then, as k approaches infinity, the unique stationary distributions 7r(k) of Theorem 3.1

approach the limiting form

lim 7, (k) = (card(o)) if i oPt (3.7)
k--* o

10 otherwise.

Proof: The proof, based on a result by Aarts and Korst [1989, pg. 18], examines whether

a limit exists for the sequence of stationary distributions as k approaches infinity. Taking

the limit of (3.4) for all i c Q leads to
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lim 7C, (k) = lim Pr- (opt-) . (3.8)k-+ k-.i- ZPr(Rk (opt, j) >-a ,Pj)

JED

For any opt ( C1°0 , (3.8) reduces to

lim,, lt(k) = in 1
k-00k--c ~1

= (card(f°)) - ' (3.9)

For all nonoptimal solutions n E 0 \ 0"' , from (3.6), (3.8) reduces to

lim 7c(k)=lim 0
k-+o k--o Z(1)

=0 (3.10)

Together, (3.9) and (3.10) satisfy (3.7), which completes the proof U

3.3 Blustrative Examples

Four illustrative examples (Johnson and Jacobson [1996]) are presented to show

how the class of GHC algorithms defined in Section 3.1 offers flexibility in defining the

solution acceptance random variable.

3.3.1 Generalized Hill Climbing Acceptance Using an Exponential
Random Variable

Set Rk (opt,n) a - t k In(U) for all opt r WO° t, n e 91 and for all iterations k, where

tk is the temperature parameter (2.2) and U is distributed U(0,1). Then

Pr(Rk (opt, n) _ o = exp(-,,, / tk), and therefore (3.1) can be expressed as
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Pr(Rk(i,j) > AQ) = min 1, exp(-Aopt,, /tk)

= min{1, exp(-A, /tk))I

which is the SA formulation (Laarhoven and Aarts [1987, pg. 20]). Note that for all

i,j Ef and for all tk > 0, exp(-Aii / tk) > 0, hence condition (c) is satisfied. Therefore

if conditions (3.3), (a), and (b) on the solution generation probabilities are met, then Theo-

rem 3.1 applies. Finally, observe that 1im min{1, exp(-Ai,./tk)}I = 0 if A a. > 0, and I

otherwise, hence condition (3.6) is satisfied and so Theorem 3.2 also applies. Note that

the optimal objective function value co does not need to be known to calculate (3.1).

3.3.2 Generalized Hill Climbing Acceptance Using a (Continuous-Valued)
Geometric Random Variable

Set Rk(opt,n) n(U) for all opt e£2°$,n cef and for all iterations k, whereln(1 - Pk)'

Pk is a probability parameter such that 0 < Pk < 1 and lim pk = 1, and U is distributed

U(0,1). Then Pr(/k (opt, n) > = (1- pk)aP " , and therefore (3.1) can be expressed

as

~ ( A_) f 1 Pk)Aj

Pr(Rk (iJ) > Ai)= min 1, (1 Pk)A j

= min{1, (1- pi)' }.

(This geometric formulation is continuous-valued because A,,, E 9?.) Observe that for all

i,j Ef and for all pk < 1, (1- pk)AIJ > 0, hence condition (c) is satisfied. Therefore if
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conditions (3.3), (a), and (b) on the solution generation probabilities are met, then Theo-

rem 3.1 applies. Also, note that im in{I (1-pk)AIJ}] = 0 if ', >0, and 1 otherwise,

hence condition (3.6) is satisfied and so Theorem 3.2 applies. Again, the value of cot is

not needed to calculate (3.1).

3.3.3 Generalized Hill Climbing Acceptance Using a Weibull Random Variable

Set lkk(opt, n) tk(-ln(U))1'0' for all opt f , n c f2 and for all iterations k,

where a > 0 is a shape parameter, tk is the temperature parameter described in (2.2), and

U is distributed U(0,1). Then Pr(Rk opt,n) > A,,,.) = exp(-(,,, / tk)'), and therefore

(3.1) can be written as

Pr(Rk(i,j) > j) = min 1, exp(-(Aop., / tk)')}

=min{1, exp -A[Pt - AeoPt.J])}. (3.11)

Observe that for all i,j c 0 and for all tk > 0, exp ([Aopt 1 - eot.j > 0, hence condi-

tion (c) is satisfied. Thus if conditions (3.3), (a), and (b) on the solution generation prob-

abilities are met, then Theorem 3.1 applies. Also, note that, for all k,

exp(-(AoPtj / tk)) < exp(-(A o. / tk Y) implies c, > c,, and so
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lim in 1, expAo = 0 if i,j o 0"', and 1 otherwise, hence condition
tk

(3.6) is satisfied and Theorem 3.2 applies. Finally, note that the Weibull random variable

formulation requires co, to be known, and so the acceptance probability distribution for

Rk(ij) cannot be written explicitly in terms only of solutions i andj. However, its distri-

bution function can be expressed in closed form, as seen by (3.11), and as shown for the

general case in Section 3.3.4.

3.3.4 The Generalized Hill Climbing Acceptance Distribution for a General
Random Variable

Any acceptance probability distribution for Rk (opt,n) that can be described explic-

itly, enables the acceptance probability distribution for Rk (i,j) to be expressed implicitly.

To see this, rewrite (3.1) as

Pr(Rk (i,j)< A,.j) - Pr(Rk(iQj) > A.j)

= Pr(RKk (Opt, j) ,P~

Pr(R, (opt,i) A,,, )

- Pr(0 (opt, i) > Ao,,) - Pr(Rk (opt,j) > (3.12)

Pr( k (opti) > Aopt. )

Therefore, (3.12) provides a general expression for the distribution function for Rk(i,j) in

terms of the distribution functions for Rk (opt, i) and Rk (opt, j). If (3.12) is invertible,

then a closed form expression for Rk(ij) can be obtained.
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CHAPTER 4: GENERALIZED HILL CLIMBING
CONVERGENCE

WITHOUT REVERSIBILITY

Chapter 4 provides a proof of GHC algorithm convergence based on

homogeneous Markov chain theory that does not require the sufficient condition of

reversibility (2.7). The proof methodology is based on a perturbation theory developed

for problems in linear algebra. Convergence is shown by bounding the sequence of

stationary distributions associated with a general GHC algorithm, with a sequence of

stationary distributions associated with a GHC algorithm with known convergence

properties (e.g., see Section 3.3.1). The key benefits of this approach are that the

reversibility condition is not required and the objective function value of a globally optimal

solution is not needed. One limitation of this approach is that as k approaches infinity, the

transition matrix of the general GHC algorithm must converge to the transition matrix of

the convergent GHC algorithm at a rate fast enough to control the bound.

4.1 Generalized Hill Climbing Class Description

Consider a class of GHC algorithms where, for all i,j r 92, the solution acceptance

probabilities are required only to satisfy the conditions

Pr(Rk (i,j) > AJ) >0 for all iterations k. (4.1)

and

c, < c => limPr(Rk(i,j) >A j = 0 (4.2)
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Conditions (4.1) and (4.2), when combined with the generation probability conditions of

Theorem 4.1, ensure that all neighboring solutions communicate for all iterations k, and

that communication is gradually lost as k approaches infinity.

4.2 Proof of Convergence

Define pR (k) and 7R (k) to be the respective transition matrix and stationary

distribution for an arbitrary GHC algorithm, for each iteration k. Let PE(k) and x E(k)

be the respective transition matrix and stationary distribution for an instance of the GHC

algorithm that is known to converge to the set of globally optimal solutions, as k

approaches infinity. Theorem 4.1 provides sufficient conditions on the arbitrary GHC

algorithm transition matrix pR (k) to ensure the existence of a unique stationary

distribution %R (k) for each finite iteration k. Theorem 4.2 proves the existence of a

generalized matrix inverse, and Theorem 4.3 formulates a bound for nR (k) in terms of

the difference between PE(k) and pR(k), and a generalized inverse corresponding to

PE(k). Theorem 4.4 proves asymptotic convergence to the set of optimal solutions

under a condition on the bound.

Theorem 4.1: Let (RJ,!,c) denote an instance of a discrete optimization

problem. Let the one-step transition probabilities associated with the GHC algorithm be

defined as
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gj(k) Pr(R,,(i, j) >: Ai~j j g'ij /i

ij(k) 0 j 2K(i),j i (4.3)
I- EP,(k) j=i.

lE gv(i)

Let the acceptance probabilities satisfy (4.1). Let the generation probabilities g,j (k)

satisfy:

(a) For all k and for all i, j c 9) there exists an integer d > 1 and a corresponding

sequence of solutions o,11,12,...,1d E Q, with lo = i,ld= j, and

g..+ (k) > 0, m = 0,1,...,d - 1.

(b) For all i,j E , g,j (k) > 0 => gi., (k) > 0.

(c) Each generation probability g,, (k) is independent of k (e.g., gj (k) = gij

for all i, j E 91 and all iterations k).

Then for each iteration k, there exists a unique stationary distribution zR (k).

Proof: The irreducibility and aperiodicity conditions of Theorem 2.1 are satisfied, as

shown in the proof of Theorem 3.1. M

Conditions (4.1), (a), (b), and (c) ensure that a path exists between any two

solutions in fl, for all iterations k. Condition (c) also implies that all transition

probabililities are asymptotically monotone, which is needed for the proof of Theorem 4.5.

48



Note that although proving existence of the unique stationary distribution %R(k)

for the transition probabilities (4.3) is straightforward, it is very difficult to derive an

analytically tractable explicit formulation of the stationary distribution, for the reasons

discussed in Chapter 2. Therefore, convergence to the set of optimal solutions is shown in

terms of a bound on the stationary probabilities 7R(k), as k approaches infinity.

To achieve this, the group inverse, A#(k), is introduced. Let {PE (k)},

k = 1,2,..., be the sequence of transition matrices of irreducible, aperiodic Markov chains

whose corresponding stationary distributions {7E (k)}, k = 1,2,..., converge as k -+ oo

to the form where all probability mass is concentrated on the set of optimal solutions fi°*.

Meyer [1975] defines A"(k) as follows:

first let

A(k) I-e(k) , (4.4)

where I is an If x If[ identity matrix, and let

R E(k)

11(k) = )  (4.5)

be the square stochastic matrix composed of identical rows of the stationary probability

vector zE(k) corresponding to PE(k). The group inverse is then defined as

A"(k) -(I-pE (k) + H(k))- - 11(k) (4.6)
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(Meyer [1975]). Theorem 4.2 guarantees that A#(k) exists, for all k.

Theorem 4.2: For every transition matrix P(k), the generalized inverse matrix

A# (k) exists, where A(k) is defined by (4.4). Furthermore, if P(k) is irreducible and

aperiodic, then A(k)=E(P( (k)-11(k)), where Pkm)(k) refers to the m-step
m=O

transition probability matrix as defined in Theorem 2.1, and I1(k) is defined by (4.5).

Proof: Modify Meyer's [1975] result by making each matrix a function of k. U

Define the vector one-norm I[IXII = 2 Ix, 1, with corresponding matrix one-norm

IlX4 =maxE -Xj . Theorem 4.3 provides a bound for 7R (k) in terms of

(PE(k) - pR (k)) and A# (k) ,for each iteration k.

Theorem 4.3: For each iteration k, let PE(k) be the transition matrix of an

irreducible, aperiodic homogeneous Markov chain, let P (k) be defined as in Theorem

4.1, and let A# (k) be defined by (4.6). Then

_E (k) - 70 (k)G (pE (k) -pR (k))A#(k)j. (4.7)

Proof: Modify Meyer's [1980] Theorem 4.2 by making each vector and matrix a function

of k. U

From Theorem 4.3, to prove that lim 17tE(k) - 7tR(k) 1 = 0, it suffices to show that

(PR (k) - pR (k))A# (k)l approaches zero, for k sufficiently large. Theorem 4.4
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represents a special case of the GHC algorithm where (PE (k) - pR (k))A# (k)H can be

bounded by an arbitrarily small number.

Theorem 4.4: For each iteration k, let the GHC algorithm one-step transition

matrix pR (k) be defined in Theorem 4.1, and let the GHC algorithm acceptance

probability Pr(Rk(i,j) > ) satisfy (4.2). Let PH(k) be the transition matrix of an

irreducible aperiodic Markov chain whose solution acceptance probabilities satisfy (4.1)

and (4.2), and whose generation probabilities are identical to the solution generation

probabilities of pR (k). Assume that all probability mass of the stationary distributions

W (k) converge to the set of optimal solutions f2°Pt c Q as k -* 0. Let A(k) be

defined by (4.4), and assume that for every Z e W, there exists an iteration ko (Z) such

that

(PE (k)- pR (k))A#(k) l < Z, (4.8)

for all k >_ ko (Z). Then, by making Z arbitrarily close to zero, there exists some ko (Z)

such that for all k > ko (Z), the stationary distributions 7R (k) of Theorem 4.1

converge as k -* oo to the form where all probability mass is concentrated on the set of

optimal solutions f° .

Proof: For any Z > 0 (arbitrarily close to zero), there exists some ko(Z) such that (4.8)

holds for all k > ko (Z). Use this and (4.7) to obtain

117c(k) - CR (k)III <Z'

for all k _> ko (Z).
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Therefore,

limI7t (k) - 7tR(k) < lim(Z) = Z,k--),o l k--+OD

and so

-im lim][nR(k) - tR(k)jj) 1im(Z) = 0,Z-+0 k-+o,,-+

which implies that

limllE(k)- 7R(k), = 0, as Z ->.

4.3 Implications of Theorem 4.4

The principal contribution of Theorem 4.4 is that it implies that matrix perturbation

techniques can only be used to prove convergence of stochastic hill climbing algorithms

under very restrictive conditions. This is illustrated by Theorems 4.5 and 4.6.

4.3.1 Norm of the Inverse Matrix

The key assumption of Theorem 4.4 is that (o(k) (k))A#(k)I can be

bounded arbitrarily close to zero, for k sufficiently large. In general, as k approaches

infinity, IA# (k) I becomes either unbounded or indeterminate. (See Theorem 4.5.)

To show this, each element [Aij (k)I is first expressed in terms of its cofactor and

the determinant ofA(k), by using (4.6) and Rabenstein [1975, pg 128], to obtain

IA (k) .,(- j(k) (4.9)det Q(k)

where

Q(k)- I- PE(k) + l(k), (4.10)
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and Q,i (k) is the cofactor of the element Qi (k). The matrix Q(k) is depicted in

Figure 4.1. Lemma 4.1 states a result needed for Theorem 4.5.

Lemma 4.1 (Protter and Morrey, [1991, pg 53]: Let IA,j (k) be expressed by

(4.9)for all ij E!f and all iterations k, and let Q(k) be defined by (4.10). If

(a) limQ. (k)=Z E91, Z 0or limQ..(k) =oo, and
k-,oo J k--D l l*

(b) det Q(k) # 0 for all iterations k, and

(c) limdetQ(k) = 0,
k---00o

then

lim 0i (k)
k--+c det Q(k)

Theorem 4.5 shows that the generalized inverse matrix norm is asymptotically unbounded

or indeterminate.

Z j§ (k) +,(k) - P (k) + 7 (k) .. - o(k) + , , (k)

j*1

-P2 (k) + 7E (k) P(k) + 7 (k) .. -2.,(k)+, o(k)
j#2

P (k) + 7C ( (k) + R( + 7 (

jicrd(Q)

Figure 4.1. The matrix Q(k). The elements in each row and column

are ordered in terms of increasing objective function value.
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Theorem 4.5: Let A(k) I - P'(k), where PE (k) is defined in Theorem 4.4.

Then for any instance of a discrete optimization problem (9), XW, c) that contains at least

one locally, but not globally optimal solution,

limGA# (k)j

is either unbounded or indeterminate.

Proof: The proof first shows that conditions (b) and (c) of Lemma 4.1 are satisfied, and

concludes by examining the two possible cases for Lemma 4.1 (a), as k approaches infinity.

To show that Lemma 4. 1(b) holds, assume that det Q(k) = 0 for some iteration

k0 . Then

(Q(ko))-' = (I - PE(ko) + I(ko)) 1

does not exist, and hence (4.6) implies that A#(ko) must not exist. But Theorem 4.2

states that the inverse A" (k) exists for all iterations k, and so det Q(k) # 0, for all k.

To show that Lemma 4.1(c) holds, assume without loss of generality that the

objective function value of each solution is unique. (If not, then each solution's objective

function value could be perturbed by some epsilon amount.) Then, order the elements in

each row and column of the transition matrix P(k) in terms of increasing objective function

value. Hence Q(k) approaches a lower triangular form as k increases, and thus for all Q(k)

terms below the main diagonal,
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lim[-Pf (k) + R (k)] = lim[-g,., + RE (k)]

-gi +1I if j= 1,

-gij otherwise.

For all terms above the main diagonal,

lim[-PE (k)+ E (k)] = lim[-g,. Pr(Rk(i,J)> _A,)+ RE (k)]k--.- t ' k-,,) t,.

=0,

and so det Q(k) approaches the product of its diagonal values as k approaches infinity.

For any locally, but not globally optimal solution i E Q, there is no solution j C 9V(i)

such that c, < c,, and so the limiting form of the corresponding diagonal element Qj, (k)

is

lim Qj, (k) = lim[ 1 - 1(k) + 7t (k)]

=lim[ I-I- ) (k) + RE(k)

"-*-/ j =Q, -j "lim PjHj ()+ i () +(k)

k-*eol jE'jo iI
LJ<i j> i

=0+ limZEPI(k)+ lim rE (k)
j>i

=0. (4.11)

(Note that all summands are bounded and nonnegative, hence the limit of the sum is equal

to the sum of the limits.) Thus for any local (but not global) optimum,

limQ .(k)=0=> limldetQ(k)=0,
k-.oo "
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and so Lemma 4. 1(c) is satisfied.

Finally, consider the two possible cases for each cofactor 0,, (k), j,i e fl.

Case 1, lim ,,(k) 0: Recall that IQo, (k)l is defined as the absolute value of the
k--ao .i

determinant of the (card(f) - 1) x (card(n) - 1) matrix formed by deleting the j' row and

i' column of the matrix Q(k). Furthermore, since Q(k) = I - PH (k) + I1(k), and since

each element of pE (k) (and therefore 1(k) ) is asymptotically monotone from (4.2) and

Theorem 4.1(c), then lim Q,, (k) must also be asymptotically monotone, for all j,i c .

Therefore, Lemma 4. 1(a) is satisfied and so

limIk# (k)j = oo

Case 2, lim Q, (k) = 0: Since lim det Q(k) = 0, then (4.9) approaches an indeterminate

0/0 form as k approaches infinity.

Therefore from Case 1 and Case 2, iimIIA#(k)IIi is either unbounded or indeterminate. N

Note that (4.8) implies that jjPE(k)-pR(k)Ij, must control the convergence of

Il(PE (k) - pR (k))A# (k)ll" This in turn suggests that, with respect to k, the convergence

rate of PR(k) to P'(k) must dominate the rate that Q(k) approaches a lower triangular

form. Equivalently, PR (k) must converge to P(k) faster than the rate that (at least one)

eigenvalue of Q(k) converges to zero.
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Note also that as k increases to infinity, the diagonal elements of Q(k) provide a

measure of the topology of the (0, 5V,c) instance. This is illustrated in Lemma 4.2.

Lemma 4.2: Suppose that for an instance (f, 9V, c),

lim Q1,(k) > 0 for every i E, (4.12)

then every optimal solution must be globally optimal.

Proof (by contradiction): Assume that at least one optimal solution j ( fl is a local, but

not global, optimum. Then (4.11) holds, which contradicts (4.12), hence j must be a

global optimum. E

Note that if (4.12) holds, then a simple local search algorithm would eventually

find a global optimum, with probability one. However, the solution space must be

enumerated to verify that (4.12) does hold.

Finally, (4.11) implies that an (0, 9V, c) instance containing multiple local optima

would cause det Q(k) to decrease relatively rapidly to zero as k increases. However, the

determinant would be very difficult to compute for problems with large solution space

cardinalities.

4.3.2 Markov Chain Condition

The condition number of a square matrix is a measure of the distance of the matrix

(in terms of a given norm) from a singular matrix (Golub and Van Loan 1989]). The

degree of closeness is measured by the reciprocal of the condition number. Meyer [1980]
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defines the condition of the transition matrix corresponding to an irreducible, aperiodic

Markov chain (indexed on each iteration k) as

cond(k) = IIA(k)11 HIA# (k)H1,

where A(k) is defined by (4.4), and A"(k) is defined by (4.6).

One way to see that the transition matrix A(k) becomes ill-conditioned, as k

becomes large, is to note that for each row of A(k) corresponding to a local optimum,

every off-diagonal element approaches zero. This is true because every move from a local

optimum is made with a hill-climbing transition probability, which must approach zero in

the limit (from (4.2)). Furthermore, each diagonal term Aj, (k) (for a local optimum

j r iQ, such that c, > ci for all i E (n r) 9(j))) must approach zero in the limit, since

Ajj(k) = 1- Pj(k) = l-I- 1  Pji(k)l = g 1 (k)Pr(R,,U.i) ! Ap

J J3o 9 ,>C

which has limit zero as k approaches infinity. Therefore, A(k) approaches a singular

matrix as k approaches infinity.

Another perspective of the conditioning problem is based on a result by Ipsen and

Meyer [1994]. They define an irreducible, aperiodic Markov chain (e.g., corresponding to

a transition matrix P (k)), as absolutely stable if there is a small constant K such that

7rE(k) - (k)i KIIpE (k) _ pR(k)G1, for all j cfl and all iterations k. (4.13)
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(Ipsen and Meyer note that the degree of smallness is problem-specific.) They then show

how their definition of stability can be used to assess the condition of a Markov chain

transition matrix. Theorem 4.6 provides this relationship.

Theorem 4.6: For an n-state irreducible Markov chain, the chain is absolutely

stable if and only if all entries of the group inverse A' (k) are small, where smallness is

as defined in Ipsen and Meyer [1994].

Proof: Define the group inverse of Ipsen and Meyer's [1994, Theorem 5.2] as a

function of k.

Theorem 4.5 shows that for optimization problems with multiple local (but not

global) optima, the inverse matrix norm [IA" (k), becomes either unbounded or

indeterminate in the limit. Theorems 4.5 and 4.6 together suggest that the Markov chain

corresponding to the matrix A(k) becomes absolutely unstable as k approaches infinity,

and so in general, a small constant K does not exist that satisfies (4.13). Hence the

bounds (4.7) and (4.13) are useful only for proving the convergence of a limited class of

GHC algorithms.

4.4 Illustrative Example

The following example, adapted from Anily and Federgruen [1987], demonstrates

how the rate that the two transition matrices converge must dominate the matrix condition

number growth.
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Let P(k) be defined by (3.2) and example (3.3.1), where tk is defined in (2.2)

and g, (k) satisfies conditions (a) and (b) of Theorem 3.1. Note that Theorem 3.1 and

example (3.3.1) give the result

It' (k) = exp(-A Omj / tk) for all i -n, and all k.1: () exp(-A opt. / t,)

neC)

Define pR(k) by (4.3), and let the solution generation probabilities corresponding to

pR (k) be identical to those of Pr(k). Furthermore, let

P/'(k) = gj(k) Pr(Rk (i,j) >_ Aj)

= g,. j(k) min{1, exp(-A,, / tk) +(tk)2 exp[-A,j / (tk)]}, 

for all i,j E 92, such that j j and any y > 1. Note that the term

(1k )2 eXP[-A,1i /Qkt,)]

dominates (4.14) for k small, while the SA term dominates for k large.

Consider the four-solution problem depicted in Figure 4.2. Note that solution p is

optimal, and that lim 7cR (k)= 1. The lines connecting the solutions indicate the
k- co P

neighborhood structure. The matrix pE (k) - pR (k) is computed (see Figure 4.3).

The matrix A#(k) is then calculated. N(tk) =1+exp(-1/t k)+ 2exp(-2/ tk) is a

normalizing value for the stationary distribution x(k). The matrix

60



Figure 4.2. Sample Problem. The neighborhood

structure is shown by the lines.

(tk )2eXP(-2/(tk Y)0 -O.5Qk )2 eXP(-2/(tk y) -0-5(k )2 exp(-2/(tk )7)

0 (tk) 2 exp(- 1/(tk)Y ) -0-5(tk ) 2 exp(- V/Qk) - 5(-tk ) 2 exp(- V(tk)

0 0 0 0

0 0 0 0

Figure 4.3. The matrix PE (k) -PR (k).

The rows and columns are arranged in order p, q, r, s.
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_____ ______ ( exp(i2) (-2 ___

exp Zj+__ 1 -0.5 exp _~ + k -0.5 exp - +
(1 ~kN(tk) tk/ N(tk) tk N~tk)

____ ~ xp ~_I, exp(iJ (- exp(i2)

1expI~. + -O.expl-I+4- k -0.exp -t

N(tk) k N(tk ) N(tk) (k N(tk)

-0.+ 1expi! exp(~ 1+
N(tk) N(tk) N(k) NIk)

Figure 4.4. The matrix Q(k). Solutions are in the same order as in Figure 4.3.

Q(k) = J -pH (k) +11I(k) is depicted in Figure 4.4. The determinant of Q(k) is (using

Mathematica)

detQk) =2 exp(-5 / tk ) + 2 exp(-4 / tk)
N(tk) N(tk)

+ 23ep(-3/ k ) + + O3exp(- / tk)
N(tk) N(tk) N(tk)

>O0exp(-1/tk) -(4.15)
N(tk)

(Note that lrn det Q(k) = 0, as noted by (4. 11).) The matrix A# (k) is shown element-

wise as
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-- k.)+N(tk) N(tk) N(tk) 1det Q(k) N(tk)'

-2~ ex(t' exp( t ) exp( --) 1 exp( tk
A" (k) =3x k 05k1,2 ~ ~ -k N(tk) -N(tk) N(tk) det Q(k) N(fk)

[ Oexp(2J) O-exp(i2) i exp(IJ2
A"# (k)= [0.5 exp(-3J - N(tk N(tk) det Q(k) -N(tk)

0[ oexp(A3 O3exp(ID 1 exp(I2)
A1 4 () 0 eP - Nt) Nk j de Q~)-Ntk)

A" (k) = 0. expI- - tk
1, -k N(tk) - N(tk) det Q(k)- N(tk)

F 1 ~exp(i) exp(I i Ix(A

42 (k = N(tk) N(tk) +N(tk) det Q(k) N(t)

2 ep 2ex63x



z [ ~ x ( I -3 e x p ( .) 0 3 e x p ( ) 2 0 3 e x p ( ) _ _ __I e x p ( I J

A23(k 3ex k N(tk) N(tk) +N(tk) det Q(k) -N~tk)'

F 3, exp(iJ 05exP (-2 3J x(' 1~p ___2)_

A'o (k) -e + (J ex

2,4 (k) = 05 exp(~ - N(t) N(tk) ]~k det Q(k) N(tk

Ntk ) N(tk ) N(tk) d t Qk) N(tk)

ex[Jexp!#)0ex 1
A3 (k) = +3x

O~expLAJ

k N(tk) N(tk)

1.75 exp(AJ 0.5 exp iJ 0.75 exp(jJ1epJ
+ l + + Iktkt
N(tk) N(tk) N(tk) Jdet Q(k) -N(tk)
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34() M ~xA 0- eXP K~ - N(tk

0.75 exp(A3) 0.5 exp -2J 0.25 expiJ 1 I exp(-2

N(tk) N(tk) N(tk) det Q(k) -N(tk)

A_ _ _ _ _ ( kO. e i0 e x p ( J 1 1 _ _

A1 () = o~ex (- tk) N(tk) det Q(k) -N(tk)

A4 #(k)~O5ex~iJ 0. -exp( -3 O3exp(J I __ exp(-!J
A4. () 0 ep t Ntk) N(tk) N(tk) det Q(k) N(tk)

_______ expL-
A3 k) O exp - N(tk)

0.75 exp 3J 0.5 exp(-2I) 0.25 exp(J 1 1 exp (-2)

N~tk) N(tk) + N(tk) det Q(k) -N(tk)
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0 (tk)exp N(t )  N(tk)

1.75exp 0.75exp 1 exp(-2

+ +( + ._ _ _

N(tk) N(tk) N(tk) J det Q(k) N(tk)

Note that

(Golub and Van Loan [1989]. Furthermore, for the example depicted in Figure 4.2,

(PH(k) - PR(k)) = 2(tk)2eXP(-1/(tk)y
) for all k. (4.16)

Using the lower bound (4.15) for detQ(k), there exists some ko such that for all k > k,

and all i, j E= 0,

-kl: V t) 0.Sexp(-1 / , ) '

N k) )

and so (accounting for the four solutions in fl), the desired upper bound is

IIA# (k) < 4(4 exp(1 / tk)). (4.17)

Therefore, (4.16) and (4.17) lead to

(PH (k)- pR (k))I IIA#(k)fI _ 2(k )2 exp(-1/(tk)')16exp(1 / tk)
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= 32(t,) 2 exp( / t, -1/(t, )'). (4.18)

Finally, taking the limit of (4.18) as k approaches infinity, and using condition (2.2) leads

to

lim [32(t. )2 exp(I / l , -l1(t. )') ] O

and so

lim7c(k) = 1,k---Qo

which is the desired result.

Note that if y < 1, then

limll(PE(k) _pR (k))II HA# (k)II 00=

and so condition (4.8) is not satisfied. Therefore if y < 1, then Theorem 4.4 could not be

used to prove convergence for this example.
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CHAPTER 5: GENERAL PROOF OF CONVERGENCE
FOR THE

GENERALIZED HILL CLIMBING ALGORITHM

Chapter 5 provides a convergence proof for GHC algorithms, based on sufficient

conditions for asymptotic transition probabilities between local and global minima. The

principal contribution of this proof is the relaxation of the Markov chain reversibility

condition, without requiring the special conditions on the GHC algorithm that are needed

for the convergence proof in Chapter 4.

5.1 Definitions and Notation

Define G c K to be the set of globally optimal solutions (i.e., i E G if c, < c, for

all j ( fl). Define L c 0) \ G to be the set of locally, but not globally, optimal solutions

(i.e., i EL ifc. <c, for all j c=V(i)). Finally, define H = fl\(L uG) to be the set of

all other solutions in 91.

GHC algorithms traverse the solution space 0 in search of a globally optimal

solution. To understand this process, the concept of a path between solutions must be

defined.

Definition 5.1: Apath from i toj, for all i,j (L u G), is a sequence of solutions

l,lId,l with o = i, Id = j, 1,1',...,d_ EH, and g,.,,, (k) > O for

m = 0,1,...,d - 1, and for all iterations k.

68



Note that a local or global optimum cannot be an intermediate solution on any

path. (The GHC algorithm can move from i toj via an intermediate solution 1 E (L u G),

but the trajectory would not be defined as a path.) Two paths can be either equivalent, or

distinct. These concepts are formally defined.

Definition 5.2: Two paths between solutions i,j C(LuG) are said to be

equivalent, if

a) all the solutions visited along both paths are identical;

b) the order in which each solution is visited along both paths is identical.

If a path between solutions i,j c (L u G) is not equivalent to any other path between i

andj, then the path is said to be distinct.

Using these definitions, the probability of transitioning between solutions

i,j c (L u G) can be defined. In particular, Pk (i _+j is the probability of transitioning

along the n' (distinct) path between i,j E(LuG), at iteration k. Pk i-) is equal to

the product of all one-step transition probabilities between adjacent solutions along the n'

path; e.g., for i,j f, the n' path i,l1,...,ld_1,j E occurs with probability

Pk i-i) =f P.1 ., +(k) . (5.1)
m=O

Note that path distinctness is sufficient for the probability of the union of all distinct paths

between i,j E K to be equal to the sum of the probabilities of the paths (Cinlar [1975, pg

3]), and so
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all distinvt
paths between

k for all i,j E(LuG), i j,

1- =j, (5.2)
sgLuG)

O otherwise.

The example depicted in Figure 5.1 illustrates how the path probabilities (5.2) are defined.

Note that i,I 1 L, j r G, and p,q,r,s E H. The neighborhood structure is indicated by

the lines between nodes. Hence Pk (i -+ j) > 0 , since i and j are separated only by q.

Similarly, Pk (l -> j) > 0, since I andj are separated only by r. However, the only way to

reach solution I from solution i is to pass through the global optimum j, and so

P (i -- 1) = 0.

S

r
P q

Figure 5.1. Example problem.
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Recall that the GHC algorithm is composed of an outer loop, indexed on k, and an

inner loop, indexed on m. Furthermore, nt(k) is the equilibrium (long-run) probability

vector for all solutions i c QI, for each k, as m - oo.

Definition 5.3: Let o (k) = Z 7ri (k), and define the equilibrium probability
ig(LuG)

8,i(k) =_ 7ti (k) / co(k), for all i E (L uG) and all k.

Let 8(k) be the vector of probabilities 8, (k), for all solutions i E (L u G). Note that

a, (k) is obtained by scaling the corresponding equilibrium probability r (k) only for the

solutions i e (L u G). Furthermore, 8, (k) > 7c (k) for all k, since e0 (k) _< 1.

Finally, note that (5.1) and definition 5.3 allow the convergence proof (Theorem

5.2) to focus only on the set of local and global optima, which are really the only solutions

of interest for a GHC algorithm.

5.2 Proof of Convergence

Theorem 5.1 provides sufficient conditions for the GHC algorithm to converge to

the set of solutions (L u G) as k approaches infinity. Theorem 5.2 provides additional

sufficient conditions for the GHC algorithm to converge to the set of globally optimal

solutions G c fl, as k approaches infinity. Note that Theorems 5.1 and 5.2 do not use the

Markov chain model to prove convergence of the GHC algorithm. However, the property

of conditional independence continues to hold: for all solutions j r fl, the probability of

transitioning to the next solution is dependent only on the current solution.
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Theorem 5.1: Let (!RYA,c) denote an instance of a discrete optimization

problem. Let each GHC transition probability Pii (k) be defined by (3.2). Let the

generation probabilities g,, (k) satisfy (3.3) and the conditions

(a) for all i,j e fK and all iterations k, there exists an integer d > 1 and a

corresponding sequence of solutions 1o, 11,12,.. Id c Q, with lo = ild= j, and

g;.,;., (k) > 0, m = 0,1,..., d- 1,

(b) lim gi, (k) > 0 for all i, j e cl, j (= 5 (i).

Moreover, let the acceptance probabilities satisfy

(c) Pr(Rk (i,j) Ai > 0 for all i,j e and all iterations k,

(d) c, <c, => limPr(Rk(i, j)> =0.

Then

lim it (k) = 0 for all i E H.
k-+wc

Proof: (First, recall that conditions (a) and (c) are sufficient for a unique distribution

7c(k) to exist for each k, as proven in Theorem 3.1.) The proof is by contradiction.

Assume that all solutions in H have strictly positive probability in the limit, and order the

h = card(H) solutions in H such that for all i,j r H, i < j implies c, < c,. (Without

loss of generality, let the objective function value of each solution in H be unique). Let

solution number one correspond to the solution in H with the smallest objective function

value, solution two correspond to the next smallest, and so on, with solution h
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corresponding to the solution in H with the largest objective function value. Then, the

corresponding equilibrium probabilities can be expressed in terms of h equations, using the

law of total probability (Cinlar [1975, pgl5]).

The proof first shows that the equilibrium probability lim 7c,(k) is zero for the ht'

solution, and then establishes the equilibrium probabilities of the remaining (h -1)

solutions to be zero, using backward substitution.

First, express the equilibrium probability vector t(k) in terms of the law of total

probability, by conditioning on every solution j E fl, to obtain

c,(k) = 1: j7(k)J', (k), for all i d0 and all k. (5.3)
jeal

Next, consider the set of solutions H c 91, and assume that

Jim 7t,(k) = e, > 0, for all i E H. (5.4)

For any solution i E H, the equilibrium probability rt(k) is expressed in terms of(5.3) as

,r (k) = 1 7,i(k),i (k) + Z 7, (k), (k) + Z, 7j(k)P, (k).
jGG jEL jeH

Collect 7c,(k) terms on the left-hand side to obtain

t, (k)(I - P, (k))= ZT ij(k)Pj, (k) + 1t j(k)Pj. (k) + Z. ij (k)Pj, (k). (5.5)
jGG j4EL jeH

Note that

(I- Ji,. (k)) = J (k) = (k) +ZP(k)
tC)j, jE, ftC<,

i~ji~j. C, <Cj
CiCJ

(e.g., (I - P (k)) is the probability that the process does not remain at solution i H in

the next transition). Hence, (5.5) can be expressed as
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j1,j (k) + Y j,i(k) = + 7cyk)P,j(k) +y~t()P,(
jea, .E'e ~ 1 EG JeL jeH

Rewrite the right-hand side in terms of hill climbing transitions for elements in set H to

obtain

2tC (k)[ jP1,,j(k) + Z J,(k) =j:7rj(k)P,(k) + y it(k)E,, (k)
IEQ Jefl. 1 jG jEL

i~,C<Cj )
+ Z2t,(k)P,,j(k)+ +~jkP'~)

jeH, jCi.
j~i. Cj <C'
Cj !C,

Note that since all sums are over a finite number of bounded, nonnegative elements, then

the limit of each term exists, and the limit of the sums is equal to the sum of the limits

(Protter and Morrey [1991, pg 37]). Therefore,

lim 7jK j(k) +Ii Jrjk, (2 ~k
k-+vo rZ +o m ()ZjEQ (k

Ce, , j -cI)

= lim( Z7C1 (k)P,, (k)' +lm( 7ri (k)P, 1 (k) (5.6)

F' jd11.
\IJ~N Jcc

From (3.2) and condition (d), all one-step hill climbing transition probabilities approach

zero in the limit. Therefore,
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lim Fr(k) JP:,(k) = lim 'Ttj(k)Pj (k
k-+coIo k-*clyoc /1J)P~

C, <CJ

=i ( )PJ =li 7(k)P(k) =0,,joL i- r |,°-
'cj <c'

since each summation includes only deteriorating (hill climbing) transition probabilities.

Therefore in the limit, (5.6) simplifies to

lim i (k)z-iP j(k) =lim *(k)Pj,(k , for all i eH. (5.7)
i ,j, /ji,
\ 2t c j 2c j >

Consider (5.7) for the particular solution i = h c H (recall that h is the solution of

maximal objective function value, e.g., c. > c. for all j ( H \ {h}, since all solutions are

arranged in order of increasing objective function value). The right-hand side of (5.7) is

zero because there are no solutions j E H of cost greater than that of solution h.

Recall that lim 7th(k) = s h > 0, from assumption (5.4). Furthermore, since h is by

definition not a local minimum, then there must exist at least one solution I Cf,

I E V(h), such that ch > c,. Therefore, from (3.2) and condition (b), the left-hand side of

(5.7) is

lim 7hA ) E Phj (k ) =8h " _,gha(k)-) , / i e , k -+/ - j e ,
h~~i, >EM¢j

ehl g.(k)

> O,
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which is a contradiction, since the right-hand side of(5.7) has limit zero. Thus

lim7ch(k) = 0. (5.8)

Now express (5.7) in terms of the particular solutions h and (h- 1) ( H to obtain

lim 7th .(k) XP(hI),j(k) = limnh(k)P,.(h )(k). (5.9)
k-w . *+G

C(k-i) >¢j

The right-hand side of (5.9) is equal to zero, from (5.8). Now consider the left-hand side

of (5.9). Since the particular element (h - 1) E H is the solution of maximal objective

function value in the set H \ {h), hence it is not a local minimum, then there must exist at

least one solution I E f), 1 9V(h - 1), such that C(,_ e c,. Therefore, from (3.2),

condition (b), and (5.4),

imFo (h-,)(k) EP h-,),j(k) = C(h-l)im 2 (h_,), (k)

(h-1)hj1 jlg%(h-I),
c(%I) CJ C(hl) CJ

(h-I) u- n ( ,.

>0,

which is a contradiction, because the right-hand side of(5.9) has limit zero. Thus

= 0.

Continuing in this manner, let

lim ,(k)=0,forallj=2,3,...,h, j=H, (5.10)k--).Oo J
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and replace (5.4) with the assumption that

lim 71 (k) = e > 0, for solution 1 eH. (5.11)k-),GD

Note that element 1 r H is the solution of minimum objective function value in the set H.

Rewrite (5.7) in terms of the particular solution 1 E=H to obtain

lim Ir,(k)jP,j(k) =im ' (5.12)
k-+oo jCQ'k-+*o r:H,

lj, ij#1,

The right-hand side of (5.12) is equal to zero, from (5.10). Now consider the left-hand

side of (5.12). Since the particular solution 1 E- H can not also be in the set (L uG),

hence it is not a local minimum, and so there must exist at least one solution 1 GE2,

1 E (1), such that cl c,. Therefore, from (3.2), condition (b), and (5.11),

lim 7t,(k)Z:PJ.(k) =e, C -- glj(k)Jlim g 1, (k)
1 lj, j r)

> 0,

which is a contradiction, because the right-hand side of (5.12) has limit zero. Thus

lim7r1 (k) = 0.

Therefore,

lim 7 (k) = 0, for all i c H.
k--wo 1

Corollary 5.1 shows that for all local and global optima i r (L U G), the probabilities

8i (k) approach the equilibrium probabilities r (k) in value, as k -> oo.
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Corollary 5.1: For all i c (L u G),

1im 8.(k) = lim n.(k).

Proof: Taking the limit of(2.6) as k --+ oo leads to

ieH ig(LuG)k
' 

3C

I=0 li :Ii()+ j(

k-r,(LuG)

= lim co(k).

Since limO) (k) = 1 and since 0 < r lir.(k) < 1 for all i f , hence the limit of the
k-so k-+ao

quotient 7t1 (k) / o (k) is equal to the quotient of the limits (Protter and Morrey [1991,

pg 39], and so

imn 1 (k) = li( +(k)/o(k))= limr,(k),forall i E(LUG)
k---k-s k-so

Theorem 5.2 provides sufficient conditions for the equilibrium probability of all

local (but not global) optima to approach zero, as k approaches infinity.

Theorem 5.2: Under the conditions and assumptions of Theorem S.1, f

(e) Pk(j---i)= o forall jEL, i(LUG),

k~l

such that Pk (J -- i)>O0 for all k,

(f) Pk (i - ad sj) < I for all i c G, jE ,

k=l
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(g) j'B 1 (k)P,(j-*q)< %0 for all j, q (L, q #j, q !P(j),
k=1

then

lim8j(k) = O forall j E L. (5.13)

Proof (by contradiction): First, each element of 8(k) is expressed in terms of the law of

total probability, using the path probabilities (5.2). Hence for each iteration k,

6J(k)=8,(k)P(i.-+ j)+ES, (k)Pk(i-+j) for all jLuG. (5.14)
i -G iL

Next, assume there exists some j e L and an iteration ko such that for all k -e k0,

Bi(k) >8>0. Summing over all iterations k leads to

(,) = ZXZ5i(k)Pk(i -- j)+ Z , (k)Pk(i->-j).
k=1 k=l i-G k=1 iEL

Since Q is finite and all summands are nonnegative, then the order of the summations can

be interchanged, resulting in

Z ;()- 2Zt,(i, --,j)+ Z Z 8(k)P(i -+,j).
k=1 iC-G k=l ieL k=1

Collecting 5j (k) terms on the left-hand side leads to

Z8j(k)(I-Pt(j-*j))--Z~s(k)Pk(i--j)+ZEs,(k)P,,O-,j).  (5.15)
k=1 lofG k=1 iEL, k=1

i~tj

Note that (1- Pk (J - J)) is the probability that, given the process is in solution j E L,

the process transitions to any solution i E (L u G) except solutionj. (Note that since all
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solutions communicate (from Theorem 5.1), a path must exist such that j can reach some

q ( (L u G).) Therefore, two cases are possible.

Case 1: Suppose the process transitions to a particular global optimum q C G. Hence,

Pk (j -> q) < - Pk (j-- j)),

and so (5.15) becomes

Z Bi(k)Pk (j-- )_ Z 8,(k)P (i -j) + 1: 8(k)P (i---j). (5.16)
k=1 i-G k=1 ieL, k=l

i~j

Since 8j (k) _< 1 for all i E 91 and all k, then (5.16) can be rewritten as

ko  00 00 0o

18 6 (k)P (j---> q) + E e Pk,(j E->q Pk,(i -"> j)+ 2: 8, (k)Pk,(i ">j). (5.17)

k=1 k=ko+l i- k=i iL, k=1

For the left-hand side of (5.17), condition (e) leads to

asPk(j-- q) = oo. (5.18)
k=ko+l

Now consider the right-hand side of (5.17). Conditions (f) and (g) and the fact that 91 is

finite leads to

S --+ J)+ Z , (k)Pk - ) < oo,
icG k=l i:L, k=1

ijj

which contradicts (5.18). Therefore there cannot exist any iteration ko such that (5.18)

holds, and so condition (e) implies that

lim8;(k) = 0.

Case 2: Suppose the process transitions to a particular local optimum q G L. Then using

the same argument as Case 1,
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lim8 .(k) = 0,k--. , J

and so

im58 (k) = 0, for all j r L. U

5.3 Implications of Theorems 5.1 and 5.2

Theorems 5.1 and 5.2, and Corollary 5.1, together prove that under certain

conditions, the set of globally optimal solutions G must occur with probability one as k

approaches infinity, since the equilibrium probabilities for any solution in H u L

approaches zero. However, the theorems do not show how the probability mass is

asymptotically distributed among the global optima. Hence in the limit, some globally

optimal solutions may occur with greater probability than other global optima.

Note that conditions (e) and (f) of Theorem 5.2 are consistent with Hajek's

condition for the simulated annealing algorithm's cooling parameter 03 in (2.21). If the

GHC algorithm is formulated as SA, then conditions (e) and (f) are satisfied if 13 is greater

than or equal to the depth of the deepest local minimum in the set L, but less than the

depth of a global minimum. Note also that conditions (e) and (g) together imply that for

all solutions j ( L, each equilibrium probability 8 1 (k) must approach zero at a minimum

rate sufficient for (g) to hold, as k -> oo.

Condition (g) requires that the equilibrium probability distribution Xi(k) be

explicitly known only for the set of local optima. On the other hand, Anily and

Federgruen's [1987] convergence theorem requires that the equilibrium distribution

7t(k) be known for all solutions in fl --hence Theorem 5.2 is a relaxation of Anily and
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Federgruen's [1987] result, in that Theorem 5.2 requires equilibrium distribution

information for only a (presumably small) subset of the solution space. However, in

practice this condition would still be very difficult to check, unless reversibility (2.7) is

also satisfied.

5.4 Illustrative Examples

Example 5.4.1 illustrates how a GHC acceptance function, based on a polynomial

function of k, satisfies the conditions of Theorems 5.1 and 5.2. Example 5.4.2 shows that

the threshold accepting algorithm does not satisfy the sufficient conditions in Theorem 3.2,

Theorem 4.4, and Theorem 5.1.

5.4.1 Generalized Hill Climbing Acceptance as a Polynomial Function of k

Consider the eight-solution example depicted in Figure 5.2, where G = {p},

L = {qj,q2,q 3 }, and H = {r,r2 ,r3,r 4 }. Let each one-step transition probability be

p r4

ri q3

q, Or3

r"2 q2

Figure 5.2. Sample problem. The neighborhood

structure is shown by the lines connecting the nodes.
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defined (for all k __ 2) as in Figure 5.3. Note that gjj (k) -1/ 2 for all i C=f0, j c X(i),

and for all k. Also, Rk(p,r) =Ap.rj/(k2U) for p,rjrn, j=1,2,3,4, and

Rk (q,,r,) &qrj /(kU) for all i= 1,2,3 and j = 1,2,3,4, where U is distributed U(0,1).

Then Pr(R, (p,r,) _ A = l/k 2 , and Pr(l, (qi,rj) Aq,.rj) = lk for all i=1,2,3 and

j = 1,2,3,4, and all k. Therefore, all solutions in C) communicate, and so conditions (a)

and (b) of Theorem 5.1 are satisfied. Furthermore, all hill climbing transition probabilities

'1 1 1

1--- 0 0 0 0

0o 0 0 1 1 0 0
k 2k 2k

0 0 1 - 0 0 1 1 0
0 0 0-- 0 00k 2k 2k

00 0 00 0
k 2k 2k

I 1 0 0 0 0 0 0
2 2

I I
0 0 0 0 0 0 0

2 2

0 0 0 1 0 0 0 0
2 2

1 0 0 1 0 0 0 0
L2 2 _

Figure 5.3. The one-step transition matrix P(k), defined for k > 2.

The rows and columns are arranged in order p,q, ,q2 ,q,ij,rr2,r 3,r 4
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from every solution in (L u G) to its neighbors in H are strictly positive, with limit zero as

k -+ oo, hence conditions (c) and (d) of Theorem 5.1 are satisfied, and so Theorem 5.1

applies. The sufficient conditions of Theorem 5.2 are now addressed.

Condition (e) examines the paths of positive probability from every local optimum

to all solutions in (L u G). Nine positive path probabilities exist:

(i) P(q q )>O,

(ii) Pk (q- p) > 0,
(iii) ~ ~, Pkq--q)lP(q, "-q)-k (q,-- p) > 0,

(iv) P (q2 -- , q) > 0,

(v) P (q2 q3)> 0,

(vi) Pk(q 2 -q 2 )= -Pk(q 2  -q)-Pk(q 2 -q 3)> 0 ,

(vii) Pk(q 3 -- q2) > 0,

(viii) Pk (q3 - P) > 0,
(ix) P (q3 -'q 3)=l-P (q3 -- q2)-Pk(q3 -- p) > 0.

Note that Pk (q02 - p) = Pk (q -+ q3) Pk (q3 - q,) = 0, since either path must visit an

intermediate solution in L u G. Note also that from the problem's symmetry, the

probabilities (i), (ii), and (iii) are respectively equal to (vii), (viii), and (ix). In addition, (i)

is equal to (ii), (iv), and (v); and (iii) is equal to (vi). Hence only (i) and (iii) must be

checked. For (i),
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IPk(q, q 2 ) = Y(jq,r 2 (k)P2 ,q,(k))
k=2 k=2

= Y 1/(2k)(1/ 2)
k=2

= Z 1/(4k)
k=2

=00

and for (iii),

k = - q k)= 1 I ,r, (k)P,,q (k)) - (1.r (k)P,P(k))1=2 k=

I [I - 1/(2k)(I / 2)-1/(2k)(1 / 2)]
k=2

- Z[1 -l/(2k)]
k=2

Therefore condition (e) holds.

Condition (f) is now addressed. From the problem symmetry,

SPk(p > q) = Pk(p -+ q3) - 1/(2k2) (1/2)
k=2 k=2 k=2

-Z11(4k2)
k=2

< 00,

and so (f) holds.

Condition (g) requires that the equilibrium probability vector 5(k) be known for

all solutions in L. Hence by solving (2.5), 7rt(k) = k2  k+ and

k k2 +3k

7.,(k) k2 +3k+4' for i =1,2,3. Therefore, o(k) = k 2 +3k+4 and so
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k2  k
5p(k) -+3k and 5q,(k) = k2 +3k for i = 1,2,3. Recall that the only positive path

probabilities between q,,q, r L, i j, are (i), (iv), (v), and (vii); furthermore, they are all

equal. In addition, 8 q(k) = 8q2 (k) = 5q (k) for all k, and so it suffices to check

condition (g) for only one path between solutions in L, e.g., for q, and q2. Hence,

j (k)Pk(q, --+ q2)=

k=1~

<- -k2 +3 kD

and so the sufficient conditions of Theorems 5.1 and 5.2 are satisfied. Therefore

lim 8 (k) = 1. (Note that
k--),o

k 2  k 2lim86(k) = lim 2 lim t (k) = lim 21

k-,00 k-, k k+3k k-- - k--,® +3k+4

which confirms the result.)

5.4.2 GHC Formulated as Threshold Accepting

The threshold accepting (TA) algorithm (Dueck and Scheuer [1990]) results from

fixing the random variable Rk as a constant for each k. To implement the TA algorithm,

define an initial threshold Q0 such that

Qo > max (c,-c) (5.19)
all i ED,
jen(i)

IQkl -< Qo, for all k (5.20)

limQk =0. (5.21)
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(The initial threshold Q0 represents the minimum one-step increase in objective function

value necessary for the GHC algorithm to be able to transition from any state i to any

other state j ). Then the GHC acceptance probability distribution is

Pr(Rk _> A,,) = Pr(Q. _> A,i )

=1 if Qk _> A,. (5.22)

otherwise.

Note that no proofs of TA convergence to (1.1) are presented in the literature (Althofer

and Koschnick [1991]). Lemma 5.1 illustrates why the TA formulation does not satisfy

the sufficient conditions needed for the convergence proofs of Theorems 3.2, 4.4, or 5.1.

Lemma 5.1: Suppose the GHC algorithm acceptance probability Pr(Rk > A..) is

defined as the TA formulation (5.22). Then the transition probabilities

gi,.(k)Pr Qk > Aj j C XN1)j # i,

Pi.j(k) 0 j 0N(i),j #i, (5.23)

1- Z Pi., (k) j=i,

do not satisfy the irreducibility condition of Theorems 3.2, 4.4, and 5. 1, for the existence

of a unique stationary distribution r(k) for each iteration k.

Proof: Irreducibility cannot be satisfied unless all states communicate (Ross [1993, pg

144]). However, from (5.21) the TA acceptance measure Qk has limit zero, and thus for
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any locally minimal state i (e.g., c, < c, for all j r N(i)), there exists an iteration k0 such

that c 1 -c=A jj > Qk for all j rN (i) and all k ko . Hence state i no longer

communicates with any state j E 0 (e.g., Pr(Qk >- = 0 for all j E NK(i) and k > k0) ,

and thus irreducibility fails. Without irreducibility, Theorem 2.1 cannot be used to show

the existence of the sequence of stationary probability distributions necessary for the

proofs of convergence of Theorems 3.2, 4.4, or 5.1. U
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CHAPTER 6: COMPUTATIONAL RESULTS

This chapter presents the methodology and computational results for experiments

conducted on three discrete optimization problems. The purpose of the experiments was

to illustrate the relationships between the GHC algorithm formulations and their finite-time

performance on the different problems. The three problems include:

(a) a flexible assembly system design (FASD) problem (Kumar and

Jacobson [1996]),

(b) a generic configuration space (Fleischer [1994]),

(c) an Air Force manufacturing process design problem, which involves

optimizing machine sequencing, workpiece, and machine parameter settings

(Walker [1992]).

The five GHC algorithm formulations presented include:

(i) simulated annealing, where Rk (i,j) is defined as in Section 3.3.1,

(ii) threshold accepting, where Rk (i, j) is defined as in Section 5.4.2,

(iii) a Weibull formulation, where Rk (i, j) is defined as in Section 3.3.3,

(iv) local search, where Rk(i,j) 0- , for all i,j r and all k, and

(v) Monte Carlo search, where Rk(i,j) =- '0, for all i,j e 0 and all k.

Tests of each Rk (i,j) formulation were conducted for each problem, to determine which

GHC algorithm (of the five formulations presented) reached the best solution (i.e., the

solution with the lowest objective function value), for a fixed number of iterations.
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The experiments were designed using guidelines proposed by Crowder, Dembo

and Mulvey [1979]. All computations were performed in C on either a SUN Ultra-1

SPARCstation, using the SunOS 5.5 operating system, or a SUN 10-51 SPARCstation

using the SunOS 5.3 operating system. All random numbers were generated using a

uniform (0,1) pseudo-random linear congruental generator, with multiplier 16807,

modulus 2147483647, and increment 0 (see Press et. al [1992, pg 278] or Law and Kelton

[1991, pg 424]). The same seed, 123, was used to initiate all experiments.

6.1 Flexible Assembly System Design Problem

The FASD problem is a precedence-constrained scheduling problem, in which a set

of N tasks must be completed by a set of Z processor types. Each processor type can

complete a subset of the tasks, but each task can be completed by only one processor type.

The goal is to determine a sequence of processors that minimizes the total required

number of processors, while satisfying precedence constraints between tasks. In essence,

this problem is a precedence-constrained Hamiltonian path problem, where each task

constitutes a vertex, and the cost of each path is the sum of the processors (of all types)

needed to complete the path. Furthermore, a path is feasible if and only if the Hamiltonian

path satisfies all precedence constraints between the tasks. Kumar and Jacobson [1996]

show that the FASD problem is NP-complete (Garey and Johnson [1979, pg 17]).

Jacobson et. al [1996] propose a simple matrix-based, polynomial-time lower bound

algorithm for the problem.
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The FASD solution space LI is composed of N-tuples of tasks, where a solution is

an ordering of the N tasks. Therefore, the size of the solution space, card(Q), is M. A

neighbor of a solution is defined by interchanging the positions of two tasks in the N-tuple

solution. Therefore, each solution, i (2, has (N) neighbors. Lastly, the objective

function is defined by first penalizing all precedence relation violations, then computing

the sum of all penalties, and finally adding the total number of required processors.

6.1.1 Experimental Design

Three FASD test problems were constructed: N = 50 tasks with Z =20

processor types; N = 100 tasks with Z = 20 processor types; and N = 150 tasks with

Z = 20 processor types. Each task has at most five predecessors, and exactly one

processor type, for all three test problems. An experiment was specified by selecting a

FASD problem, an Rk (i, J) formulation, and a corresponding set of inputs describing the

number of iterations and the Rk (i,j) parameter's behavior, and then executing the GHC

algorithm formulation on one hundred randomly generated problem instances. Each

problem instance was generated using its own unique random number seed. The same

seeds were used to generate the problem instances across all experiments (i.e., all

experiments on each problem used the same problem instances). Furthermore, the same

(feasible) initial solution was used for each instance of every experiment.

For each FASD problem instance, the solution with the minimum objective

function value found by the GHC algorithm (to date) was recorded, and the solution's
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feasibility was noted. For each experiment, the average minimum objective function value

(i.e., the average minimum number of required processors), the standard deviation, and

maximum and minimum objective function values, were computed from the set of feasible

(best to date) solutions obtained from the one hundred problem instances.

6.1.2 Results

The first set of experiments were conducted to determine how the five selected

GHC Rk (i,j) parameter choices, the problem size, and the number of iterations, affected

the performance of the GHC algorithm on the FASD problem. The results are presented

in Tables 6.1 - 6.5. Of the five GHC formulations, SA's performance was the least

sensitive to changes in its governing parameters (e.g., its initial temperature to, its cooling

parameter 4, and its inner and outer loop values M and K). The Weibull formulation

experiments used the same to, 4, M, and K parameters as used for the SA formulation,

hence it measured how the shape parameter a would affect the performance of SA. Two

Weibull shape parameters were considered: ax = 1/ 2, and cc = 2. Note that the a = 1/ 2

case has the effect of increasing the probabilities of SA hill climbing transitions;

conversely, the a = 2 case reduces the corresponding transition probabilities. For the

FASD problem, the c = 2 case virtually guaranteed that for each trial, the final solution

would be feasible. However, the Weibull formulation did not measurably improve the

mean final objective function values over those found by the SA formulation.

Furthermore, the GHC algorithm a = 1/ 2 Weibull formulation was unable to find as

92



Table 6.1. FASD results for the SA GHC algorithm, where to = 1.0, and tk+I = 4 ) tk.

Note: cpu times are for the SUN Ultra-i, and are typical of the five GHC formulations.

Outer Inner Decrement Mean Standard Fraction Minimum Maximum
loop loop 4 objective deviation feasible objective objective
K M function function function

value value value

(50 tasks, 20 processors) (14 cpu minutes)
500 200 .99 29.31 1.98 1.00 24 34
250 400 .95 29.31 1.85 1.00 24 34
100 1000 .90 29.21 1.93 0.99 25 34
100 1000 .85 29.21 2.00 1.00 24 33

(1.5 cpu minutes)
500 20 .99 31.37 2.18 1.00 26 36
250 40 .95 31.28 2.13 1.00 27 38
100 100 .90 31.37 2.34 1.00 24 37
100 100 .85 31.36 1.93 1.00 26 36

(100 tasks, 20 processors) (25 cpu minutes)
500 200 .99 47.52 3.14 0.99 37 56
250 400 .95 47.72 2.75 0.99 39 54
100 1000 .90 47.61 2.99 0.96 39 54
100 1000 .85 47.84 3.04 0.97 40 56

(2.5 cpu minutes)
500 20 .99 58.38 3.08 0.97 51 66
250 40 .95 57.25 3.16 0.99 51 65
100 100 .90 57.13 3.02 0.98 49 64
100 100 .85 57.37 3.41 0.98 48 64

(150 tasks, 20 processors) (37 cpu minutes)
500 200 .99 66.11 3.60 0.96 58 74
250 400 .95 65.77 4.13 0.96 59 79
100 1000 .90 65.71 3.80 0.97 58 77
100 1000 .85 65.88 3.93 0.94 57 75

(4 cpu minutes)
500 20 .99 88.90 3.71 0.96 79 96
250 40 .95 87.85 3.62 0.98 75 95
100 100 .90 87.96 3.48 0.97 81 96
100 100 .85 87.52 3.68 0.98 78 97
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Table 6.2. FASD results for the TA GHC algorithm, where Qk+1 = Qk.

Outer Inner Decre- Initial Mean Standard Fraction Mimmum Maximum
loop loop ment threshold objective deviation feasible objective objective
K M * Qo function function function

value value value

(50 tasks, 20 processors)
500 200 0.995 10 31.36 2.14 1.00 27 36
50 2000 0.90 10 29.76 1.81 1.00 25 34

500 200 0.995 100 47.29 2.15 0.21 42 50
50 2000 0.90 100 30.98 1.92 1.00 25 36

500 20 0.995 10 38.38 2.33 0.88 34 48
50 200 0.90 10 31.90 2.22 0.81 26 35

500 20 0.995 100 47.29 2.15 0.21 42 50
50 200 0.90 100 36.93 2.46 0.69 31 46

(100 tasks, 20 processors)
500 200 0.995 10 58.19 3.38 0.98 50 67
50 2000 0.90 10 48.17 3.24 0.92 42 56

500 200 0.995 100 94.94 1.73 0.16 92 98
50 2000 0.90 100 55.26 3.36 0.93 43 64
500 20 0.995 10 82.00 5.63 0.30 72 95
50 200 0.90 10 61.42 3.54 0.33 54 69
500 20 0.995 100 94.94 1.73 0.16 92 98
50 200 0.90 100 87.14 9.06 0.14 72 98

(150 tasks, 20 processors)
500 200 0.995 10 89.11 3.71 0.85 81 96
50 2000 0.90 10 67.46 3.51 0.78 60 76

500 200 0.995 100 142.37 2.45 0.19 136 146
50 2000 0.90 100 83.30 3.33 0.67 73 93

500 20 0.995 10 140.09 4.96 0.22 123 147
50 200 0.90 10 96.00 1.41 0.02 95 97

500 20 0.995 100 142.37 2.45 0.19 136 146
50 200 0.90 100 142.54 2.18 0.13 138 146
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Table 6.3. FASD results for the Weibull GHC algorithm,

where to = 1.0, and tk+I = 4 tk.

Outer Inner Decre- Shape Mean Standard Fraction Minimum Maxi-
loop loop ment parameter objective deviation feasible objective mum
K M a a function function objective

value value function
value

(50 tasks, 20 processors)
250 400 0.95 0.5 29.26 2.16 0.92 24 38
250 400 0.95 2.0 29.34 1.92 1.00 25 34
100 1000 0.85 0.5 29.42 1.95 0.93 25 35
100 1000 0.85 2.0 29.28 1.80 1.00 25 33
250 40 0.95 0.5 31.00 2.23 0.73 26 35
250 40 0.95 2.0 31.40 2.02 1.00 25 36
100 100 0.85 0.5 31.25 2.16 0.79 25 36
100 100 0.85 2.0 31.33 2.01 1.00 27 36

(100 tasks, 20 processors)
250 400 0.95 0.5 46.69 2.84 0.62 40 53
250 400 0.95 2.0 47.94 2.68 1.00 41 55
100 1000 0.85 0.5 47.48 2.92 0.64 40 53
100 1000 0.85 2.0 47.97 2.90 1.00 41 55
250 40 0.95 0.5 57.87 2.76 0.53 52 64
250 40 0.95 2.0 57.60 3.37 1.00 48 65
100 100 0.85 0.5 57.66 3.45 0.53 50 66
100 100 0.85 2.0 57.37 3.32 1.00 48 66

(150 tasks, 20 processors)
250 400 0.95 0.5 65.09 3.61 0.43 59 73
250 400 0.95 2.0 65.88 3.69 1.00 57 76
100 1000 0.85 0.5 65.18 3.13 0.38 59 73
100 1000 0.85 2.0 65.98 3.42 1.00 58 75
250 40 0.95 0.5 89.29 3.77 0.45 83 100
250 40 0.95 2.0 86.88 4.11 1.00 78 97
100 100 0.85 0.5 88.18 4.32 0.38 81 97
100 100 0.85 2.0 86.92 3.67 1.00 78 96
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Table 6.4. FASD results for the local search GHC algorithm.

Outer Inner Para- Mean Standard Fraction Minimum Maximum
loop loop meter objective deviation feasible objective objective
K M R(i,j) function function function

value value value

(50 tasks, 20 processors)
1 100000 0 36.46 2.44 1.00 30 43
1 10000 0 36.46 2.44 1.00 30 43

(100 tasks, 20 processors)
1 100000 0 62.42 3.43 1.00 51 71
1 10000 0 63.99 3.30 1.00 54 72

(150 tasks, 20 processors)
1 100000 0 87.82 5.86 1.00 76 107
1 10000 0 94.04 4.46 1.00 84 107

Table 6.5. FASD results for the Monte Carlo GHC algorithm.

Outer Inner Para- Mean Standard Fraction Minimum Maximum
loop loop meter objective deviation feasible objective objective
K M Rk(ij) function function function

value value value

(50 tasks, 20 processors)
1 100000 le06 47.29 2.15 0.21 42 50
1 10000 1e06 47.29 2.15 0.21 42 50

(100 tasks, 20 processors)
1 100000 1e06 94.94 1.73 0.16 92 98

1 10000 1e06 94.94 1.73 0.16 92 98

(150 tasks, 20 processors)
1 100000 le06 142.37 2.45 0.19 136 146

1 10000 1e06 142.37 2.45 0.19 136 145
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many feasible final solutions as the corresponding SA formulation, and the feasibility

percentage decreased for the larger FASD problem instances.

Of the three hill climbing GHC formulations, TA's performance was the most

sensitive to changes in its parameters (e.g., its initial threshold Q0, its reduction parameter

, and its inner and outer loop values M and K). TA achieved its best results for FASD by

using a low initial threshold and a fast threshold decrement rate, (i.e., by quickly

converging to local search). However, TA was generally outperformed by SA and the

Weibull formulation (in terms of mean final objective function values and feasibility

percentages), especially for the larger FASD problem sizes. Finally, both local search and

Monte Carlo search were outperformed by the three hill climbing algorithms. Monte

Carlo search was the worst performer, in terms of mean objective function values and final

solution feasibility percentages.

The second set of experiments were conducted to determine how the five selected

Rk (i, j) formulations performed over ten thousand iterations (K = 100, M = 100), on the

FASD N = 50/Z = 20, 100/20, and 150/20 test problems. The mean final objective

function value found by each Rk(i,j) formulation was recorded and plotted at 500-

iteration increments.

The results for the FASD 50/20 problem are depicted in Figure 6.1. For SA,

to = 1.0, and the decrement was 0.85. The Weibull used the same to value and decrement

as SA, and set a = 0.5. TA used Qo = 10.0, and the decrement was 0.9. The results for

the FASD 100/20 and 150/20 problems are depicted in Figures 6.2 and 6.3, respectively.
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For SA, to = 1.0, and the decrement was 0.85. The Weibull used the same to value and

decrement as SA, and set a = 2.0. TA used Q0 = 3.0, and the decrement was 0.90.

Note that the Monte Carlo formulation was unable to locate any solutions with

lower objective function values than the initial solution. The local search implementation

did somewhat better, but was still outperformed by the hill climbing algorithms. The TA,

SA, and Weibull formulations all performed about the same. The Monte Carlo

formulation's poor performance suggests that the FASD problem probably contains

relatively few good solutions, while the local search formulation's relatively better

performance suggests that neighboring solutions are likely to have similar objective

function values (e.g., neighborhoods form regions of attraction around local optima).
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Figure 6.1 Comparison of Acceptance Formulations

for the 50/20 FASD Problem.
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for the 150/20 FASD Problem.
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6.2 Generic Configuration Space Problem

The generic configuration space problem (Fleischer [1994]) was selected because

it allows the researcher to precisely control each test problem's number, depth, and

location of local and global optima. To create a generic configuration space, a set of

objective function values are randomly generated and stored in memory. A neighborhood

is then defined by linking each objective function value to any specified number of other

objective function values. The main disadvantage of the generic configuration space

approach is that its computer memory requirement is excessive for large solution space

cardinalities.

6.2.1 Experimental Design

The goal of the generic configuration space experiments was to determine whether

neighborhood size and the range in objective function values (i.e., the problem's objective

function topology) would affect the performance of the five GHC algorithm formulations.

Two test problems were created: for the first problem, a vector of five thousand objective

function values was defined, with values between zero and one hundred. For the second

problem, a vector of five thousand objective function values was again defined, but with

values between zero and five hundred. An experiment was defined by executing one of

the five GHC algorithm formulations on one hundred randomly generated problem

instances. The same initial solution (vector element) was used for each instance of each

experiment. Finally, for each experiment, the mean best to date objective function value,
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the standard deviation, and maximum and minimum objective function values, were

computed.

The experiments assessed whether changing the total number of iterations (one

hundred, five hundred, or one thousand), the neighborhood size (from ten to fifty

neighbors, in steps often), or the range in objective function values (zero to one hundred,

or zero to five hundred), would affect the performance of the five GHC algorithm

formulations. Finally, pilot runs were conducted for the SA, TA, and Weibull GHC

formulations. The pilot runs were used to tune the input parameters of the respective

GHC formulations to obtain their best possible performance for the generic configuration

space problem.

6.2.2 Results

Tables 6.6 - 6.10 depict the results for the five selected GHC algorithm

formulations. For the generic configuration space, the five formulations performed much

differently with respect to each other than they had for the FASD problem in Section 6.1.

The Monte Carlo GHC formulation (see Table 6.10) consistently found mean final

objective function values that were less than or equal to those found by the four other

GHC algorithm formulations. The local search formulation was the worst performer, and

the TA, SA, and Weibull formulations all performed about the same.

For all five GHC formulations, larger neighborhoods and tighter objective function

value ranges had the effect of improving performance. Increasing the total number of
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iterations improved the performance of all GHC formulations except local search, which

apparently became trapped in local minima within the first 100 iterations.

Table 6.6. Results for the SA GHC algorithm, where to = 300, and tk+1 = 0.9 5tk.

Outer Inner Objective Neighbor- Mean Standard Minimum Maximum
loop loop function hood size objective deviation objective objective
K M values function function function

value value value
100 10 0-100 10 0.69 0.97 0 5
100 10 0-100 20 0.36 0.64 0 3
100 10 0-100 30 0.14 0.40 0 2
100 10 0-100 40 0.09 0.35 0 2
100 10 0-100 50 0.04 0.20 0 1
100 10 0-500 10 9.12 9.03 0 50
100 10 0-500 20 5.31 5.38 0 23
100 10 0-500 30 3.97 5.20 0 40
100 10 0-500 40 2.87 3.41 0 17
100 10 0-500 50 2.18 2.65 0 15
100 5 0-100 10 1.28 1.58 0 9
100 5 0-100 20 0.63 0.98 0 5
100 5 0-100 30 0.34 0.74 0 5
100 5 0-100 40 0.19 0.53 0 3
100 5 0-100 50 0.18 0.44 0 2
100 5 0-500 10 11.52 11.61 0 62
100 5 0-500 20 7.97 9.51 0 62
100 5 0-500 30 5.11 5.59 0 30
100 5 0-500 40 3.69 4.94 0 34
100 5 0-500 50 2.72 3.10 0 19
100 1 0-100 10 3.72 4.11 0 17
100 1 0-100 20 1.86 2.55 0 13
100 1 0-100 30 1.61 2.13 0 9
100 1 0-100 40 1.24 1.70 0 12
100 1 0-100 50 1.45 2.00 0 13
100 1 0-500 10 23.33 22.2 0 91
100 1 0-500 20 14.28 13.87 0 58
100 1 0-500 30 10.24 11.20 0 67
100 1 0-500 40 8.39 9.60 0 51
100 1 0-500 50 7.15 7.87 0 45
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Table 6.7. Results for the TA GHC algorithm, where Q0 = 300, and Qk+1 = 0.95 Qk.

Outer Inner Objective Neighbor- Mean Standard Minimum Maximum
loop loop function hood size objective deviation objective objective
K M values function function function

value value value
100 10 0-100 10 0.83 1.17 0 5
100 10 0-100 20 0.37 0.77 0 5
100 10 0-100 30 0.15 0.41 0 2
100 10 0-100 40 0.01 0.10 0 1
100 10 0-100 50 0.06 0.28 0 2
100 10 0-500 10 7.72 7.60 0 28
100 10 0-500 20 5.58 6.03 0 29
100 10 0-500 30 3.91 4.50 0 20
100 10 0-500 40 3.11 3.55 0 16
100 10 0-500 50 1.97 2.32 0 11
100 5 0-100 10 1.31 1.77 0 9
100 5 0-100 20 0.62 1.03 0 5
100 5 0-100 30 0.30 0.61 0 3
100 5 0-100 40 0.17 0.47 0 2
100 5 0-100 50 0.16 0.42 0 2
100 5 0-500 10 12.71 13.38 0 75
100 5 0-500 20 7.46 7.07 0 28
100 5 0-500 30 5.10 6.17 0 47
100 5 0-500 40 3.78 3.96 0 18
100 5 0-500 50 3.79 4.63 0 20
100 1 0-100 10 3.04 3.33 0 16
100 1 0-100 20 2.02 2.71 0 14
100 1 0-100 30 1.37 1.76 0 7
100 1 0-100 40 1.07 1.43 0 7
100 1 0-100 50 1.07 1.47 0 8
100 1 0-500 10 20.71 19.86 0 78
100 1 0-500 20 12.51 13.26 0 78
100 1 0-500 30 9.04 8.72 0 47
100 1 0-500 40 8.39 9.28 0 47
100 1 0-500 50 7.50 7.34 0 34
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Table 6.8. Results for the Weibull GHC algorithm, where

to = 300, tk+1 = 0.9 5tk, and a = 0.25.

Outer Inner Objective Neighbor- Mean Standard Minimum Maximum
loop loop function hood size objective deviation objective objective
K M values function function function

value value value
100 10 0-100 10 0.69 1.01 0 5
100 10 0-100 20 0.41 0.70 0 3
100 10 0-100 30 0.18 0.48 0 2
100 10 0-100 40 0.10 0.36 0 2
100 10 0-100 50 0.08 0.31 0 2
100 10 0-500 10 6.57 7.55 0 53
100 10 0-500 20 3.44 3.60 0 17
100 10 0-500 30 2.59 3.23 0 20
100 10 0-500 40 1.90 2.32 0 16
100 10 0-500 50 1.50 1.91 0 10
100 5 0-100 10 1.07 1.49 0 9
100 5 0-100 20 0.46 0.74 0 3
100 5 0-100 30 0.24 0.55 0 3
100 5 0-100 40 0.20 0.47 0 2
100 5 0-100 50 0.11 0.35 0 2
100 5 0-500 10 8.89 10.38 0 62
100 5 0-500 20 5.06 6.90 0 47
100 5 0-500 30 4.14 4.44 0 23
100 5 0-500 40 3.05 3.74 0 16
100 5 0-500 50 2.45 3.16 0 15
100 1 0-100 10 2.82 3.22 0 14
100 1 0-100 20 1.85 2.63 0 13
100 1 0-100 30 1.22 1.51 0 9
100 1 0-100 40 1.21 1.82 0 10
100 1 0-100 50 1.09 1.75 0 10
100 1 0-500 10 16.78 19.37 0 141
100 1 0-500 20 10.92 11.38 0 53
100 1 0-500 30 10.03 11.33 0 58
100 1 0-500 40 7.37 7.79 0 43
100 1 0-500 50 6.64 6.97 0 36
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Table 6.9. Results for the local search GHC algorithm.

Outer Inner Objective Neighbor- Mean Standard Minimum Maximum
loop loop function hood size objective deviation objective objective
K M values function function function

value value value
1 1000 0-100 10 6.28 6.22 0 27
1 1000 0-100 20 3.29 3.71 0 16
1 1000 0-100 30 2.38 2.81 0 13
1 1000 0-100 40 1.59 2.17 0 10
1 1000 0-100 50 0.95 1.25 0 6
1 1000 0-500 10 36.88 37.34 0 188
1 1000 0-500 20 21.01 23.93 0 156
1 1000 0-500 30 11.36 11.62 0 54
1 1000 0-500 40 9.37 9.11 0 50
1 1000 0-500 50 7.58 9.52 0 47
1 500 0-100 10 6.28 6.22 0 27
1 500 0-100 20 3.29 3.71 0 16
1 500 0-100 30 2.38 2.81 0 13
1 500 0-100 40 1.59 2.17 0 10
1 500 0-100 50 0.95 1.25 0 6
1 500 0-500 10 36.88 37.34 0 188
1 500 0-500 20 21.01 23.93 0 156
1 500 0-500 30 11.36 11.62 0 54
1 500 0-500 40 9.37 9.11 0 50
1 500 0-500 50 7.58 9.52 0 47
1 100 0-100 10 6.28 6.22 0 27
1 100 0-100 20 3.29 3.71 0 16
1 100 0-100 30 2.38 2.81 0 13
1 100 0-100 40 1.59 2.17 0 10
1 100 0-100 50 0.95 1.25 0 6
1 100 0-500 10 36.88 37.34 0 188
1 100 0-500 20 21.01 23.93 0 156
1 100 0-500 30 11.36 11.62 0 54
1 100 0-500 40 9.37 9.11 0 50
1 100 0-500 50 7.58 9.52 0 47
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Table 6.10. Results for the Monte Carlo GHC algorithm.

Outer Inner Objective Neighbor- Mean Standard Minimum Maximum
loop loop function hood size objective deviation objective objective
K M values function function function

value value value
1 1000 0-100 10 0.37 0.72 0 3
1 1000 0-100 20 0.07 0.33 0 2
1 1000 0-100 30 0.08 0.34 0 2
1 1000 0-100 40 0.03 0.22 0 2
1 1000 0-100 50 0.01 0.10 0 1
1 1000 0-500 10 3.61 4.5 0 22
1 1000 0-500 20 1.72 2.16 0 10
1 1000 0-500 30 1.21 1.65 0 8
1 1000 0-500 40 0.93 1.3 0 6
1 1000 0-500 50 0.86 1.33 0 6
1 500 0-100 10 0.81 1.13 0 5
1 500 0-100 20 0.39 0.76 0 4
1 500 0-100 30 0.17 0.43 0 2
1 500 0-100 40 0.08 0.31 0 2
1 500 0-100 50 0.04 0.24 0 2
1 500 0-500 10 4.96 5.59 0 27
1 500 0-500 20 3.47 4.51 0 20
1 500 0-500 30 2.28 2.94 0 17
1 500 0-500 40 2.25 2.87 0 20
1 500 0-500 50 1.67 2.06 0 10
1 100 0-100 10 2.20 2.85 0 16
1 100 0-100 20 1.62 2.26 0 14
1 100 0-100 30 1.23 2.04 0 14
1 100 0-100 40 0.87 1.30 0 7
1 100 0-100 50 1.01 1.47 0 8
1 100 0-500 10 12.06 13.75 0 93
1 100 0-500 20 8.63 8.58 0 43
1 100 0-500 30 7.0 7.32 0 35
1 100 0-500 40 6.71 6.12 0 27
1 100 0-500 50 6.29 6.23 0 29
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One explanation for the success of the Monte Carlo GHC formulation is that the

five thousand objective function values in each problem were generated uniformly

randomly between their minimum and maximum allowable values. Therefore a global

maximum was as likely to be a neighbor of a global minimum as any other solution, and so

the objective function topology was highly irregular, with small or nonexistent regions of

attraction surrounding local minima. Another explanation is that for each experiment, the

GHC algorithm had the opportunity to search a significant proportion of the solution

space (between 2% and 20%, depending on the number of iterations performed). These

percentages are much higher than would occur if the GHC algorithm was executed on a

more typical discrete optimization problem, and thus would also favor Monte Carlo

search. Research is needed to assess how the five GHC formulations would perform on a

smoother objective function topology, such as a discretized version of the problem

suggested by Bohachevsky, Johnson, and Stein [1986, Figure 1].

6.3 Air Force Manufacturing Process Design Problem

The research goal of this section was to examine how the five selected GHC

formulations perform on an Air Force manufacturing process design problem. The Air

Force wishes to develop manufacturing process design tools that optimize the selection,

input parameters, and sequencing of operations for material shaping and microstructure

treatment. As an initial application, the Air Force is planning to use the tools to design the

manufacturing process for an aircraft turbine engine compressor rotor. Traditional

production techniques use empirical rules to optimize individual production operations
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(e.g., forging, machining, and heat treatment), and sequence the individual operations

based on experience or industry tradition. In contrast, the Air Force wishes to optimize

the overall manufacturing process, in order to achieve the best balance of manufacturing

cost, producibility, and final product properties.

A principal challenge to the Air Force approach is that the size of the solution

space 92 can become extremely large as the number of potential process operations,

operation parameters, and operation parameter values (discretized, if necessary) are

increased. (The solution space cardinality of the problem used for the computations in this

section is approximately 1020 .) In addition, Sullivan [1996] describes the difficulties of

developing a measure (e.g., an objective fuinction) that accurately captures the process

stability, product properties, and total cost.

With the assistance of Wright Laboratory and Ohio University personnel, Sullivan

[1996] analyzes three candidate process designs for the Air Force initial application. This

research selects one of the designs--an upset forge, rough machine, and finish machine

sequence, and uses the design to compare the respective performance of the five GHC

algorithm formulations. The upset forge, rough machine, and finish machine models were

developed and coded in C by researchers at Ohio University (Sullivan [1996]). The

objective function and process feasibility criteria were developed by a team of Ohio

University, Wright Laboratory, and Virginia Tech researchers. (Two causes of process

infeasibility are the violation of a physical constraint (e.g., exceeding a forge press

capacity), or the violation of a material property (e.g., material cracking from excessive
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deformation in a forging operation).) Finally, a neighborhood was defined by randomly

selecting one of the process operations, then randomly selecting an operation parameter,

and finally randomly perturbing the parameter's value.

6.3.1 Experimental Design

An experiment was specified by selecting a set of inputs for the forge and machine

model parameters, a GHC algorithm (Rk (i, )) formulation, and a corresponding set of

inputs describing the number of iterations and the Rk(i,j) parameter's behavior. An

experiment was conducted by executing the GHC algorithm formulation on thirty problem

instances. Each problem instance was generated by randomly selecting a set of inputs for

the model parameters. The same seeds were used to generate the problem instances for all

experiments. All experiments were replicated twice, first for ten thousand iterations (per

problem instance), and then for one hundred thousand iterations (per problem instance).

For each problem instance, the solution with the minimum objective function value

found by the GHC algorithm was recorded, and the solution's feasibility was noted. For

each experiment, the mean minimum objective function value, the standard deviation, and

maximum and minimum objective function values, were computed from the set of feasible

final solutions obtained from the thirty problem instances.

6.3.2 Results

All final solutions were feasible in each experiment, hence all results are averaged

over thirty trials. The SUN Ultra-I computer required an average of 30 cpu minutes for

each ten-thousand iteration experiment, and an average of 310 cpu minutes for each one-
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hundred-thousand iteration experiment. (This is why only thirty trials were conducted per

experiment, versus one hundred trials for the problems in Sections 6.1 and 6.2.) The

results are shown in Tables 6.11 - 6.14.

SA was able to find better results (lower mean objective function values) than TA

for the ten-thousand iteration computations. The performance gap was most pronounced

for experiments in which the Rk (i,j) parameter was very slowly decreased (e.g., for the

K = 500, M = 20 case of Tables 6.11 and 6.12). SA and TA performed about the same

for the one hundred-thousand iteration computations. The Weibull GHC formulation

(Table 6.13) provided the best overall performance for the Air Force process design

problem, for the experiments in which the shape parameter alpha was strictly less than

one.

Table 6.11. Results for the SA GHC algorithm,

where to = 10000, and tk+1 = tk.

Outer Inner Decre- Mean Standard Minimum Maximum
loop loop ment objective deviation objective objective
K M function function function

value value value
500 200 .99 1645.21 8.52 1618.89 1659.44
200 500 .95 1655.78 31.56 1627.97 1745.56
200 500 .90 1700.38 44.20 1634.59 1754.67
100 1000 .85 1688.28 43.03 1636.01 1752.09
500 20 .99 1648.24 7.88 1624.55 1659.44
200 50 .95 1708.38 73.27 1638.42 1852.99
200 50 .90 1746.56 73.09 1624.55 1826.80
100 100 .85 1763.14 76.51 1648.78 1858.53
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Table 6.12. Results for the TA GHC algorithm,

where Qo = 10000, and Qk+, =)Qk .

Outer Inner Decre- Mean Standard Minimum Maximum
loop loop ment objective deviation objective objective
K M 4 function function function

value value value
500 200 .99 1673.45 32.58 1636.01 1745.56
200 500 .95 1652.61 3.09 1636.20 1653.18
200 500 .90 1699.96 48.26 1630.35 1745.56
100 1000 .85 1707.12 46.75 1624.55 1745.56
500 20 .99 1743.24 40.30 1636.20 1819.10
200 50 .95 1757.43 59.71 1624.55 1819.10
200 50 .90 1784.11 57.14 1636.01 1852.99
100 100 .85 1768.48 67.71 1624.55 1845.64

Table 6.13. Results for the Weibull GHC algorithm, where to = 10000, and tk+1 = 4 t k.

Outer Inner Para- Decre- Mean Standard Minimum Maximum
loop loop meter ment objective deviation objective objective
K M Q 4 function function function

value value value
500 200 0.25 .99 1630.32 7.42 1620.69 1647.47
500 200 0.50 .99 1630.32 7.04 1624.55 1658.41
500 200 1.25 .99 1646.65 7.85 1636.01 1661.98
500 200 0.25 .95 1648.29 23.10 1636.01 1745.56
500 200 0.50 .95 1675.45 49.58 1624.55 1790.29
500 200 1.25 .95 1712.97 56.94 1638.42 1819.10
500 20 0.25 .99 1627.94 27.04 1492.15 1661.27
500 20 0.50 .99 1643.35 7.44 1626.21 1658.82
500 20 1.25 .99 1665.02 44.44 1624.55 1843.65
500 20 1.5 .99 1669.46 44.81 1633.39 1772.38
500 20 2.0 .99 1704.08 58.02 1632.83 1772.38
500 20 4.0 .99 1701.91 53.64 1633.39 1772.38
500 20 0.25 .95 1656.82 70.44 1492.15 1828.50
500 20 0.5 .95 1731.97 70.88 1641.84 1858.44
500 20 1.25 .95 1768.00 94.50 1638.56 2012.66
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Table 6.14. Results for the local search and Monte Carlo GHC algorithms.

Outer Inner Para- Mean Standard Minimum Maximum
loop loop meter objective deviation objective objective
K M Rk(ij) function function function

value value value

(local search)
1 100000 0 1757.29 133.88 1616.82 2241.37
1 10000 0 1796.54 110.56 1624.55 2241.37

(Monte Carlo search)
1 100000 le09 1855.14 65.97 1507.71 1868.41
1 10000 le09 1852.41 65.95 1507.71 1868.41

Indeed, the 4) = 0.99, a = 0.25 experiments reported the lowest average objective

function value of all experiments conducted. Note that this (4,a) choice represents the

slowest decreasing Rk (i,j) parameter schedule of all experiments conducted for the Air

Force problem. Finally, neither the local search nor the Monte Carlo GHC formulations

performed as well as any of the hill climbing GHC algorithms.

6.4 Summary

The FASD, the generic configuration space, and the Air Force manufacturing

design problem experiments suggest that relationships do exist between the selected GHC

algorithm formulations and finite-time GHC algorithm performance. The Monte Carlo

formulation performed very well on the generic configuration space problem, yet

performed poorly on the other two problems. For the FASD problem, TA was much
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more sensitive to parameter tuning than was SA. The Weibull formulation performed

better for the Air Force and generic configuration space problems when the shape

parameter (x was strictly less than one; conversely, (x values strictly greater than one

worked better for the FASD problem. Additional research is necessary to more explicitly

quantify how each GHC algorithm formulation performs on the three problems, and to

examine additional GHC algorithm formulations, such as a gamma random variable or a

binomial random variable.
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CHAPTER 7: FINALE

Many discrete optimization (minimization) problems are difficult to solve, i.e., are

NP-complete. There are no known polynomial-time algorithms that can solve NP-

complete problems. However, since NP-complete problems contain many examples of

practical interest, heuristic methods have been developed that efficiently find near-optimal

solutions. Heuristic methods can be grouped into two conceptual classes: a class that

computes the best solution constructively starting from raw data, and a class that

iteratively improves upon an existing solution. Stochastic hill climbing algorithms are

iterative in nature, and have the ability to probabilistically accept candidate solutions with

higher cost than that of the incumbent solution, in an effort to escape local optima.

7.1 Conclusions and Extensions

This dissertation introduces generalized hill climbing (GHC) algorithms, which

include several existing discrete optimization search algorithms such as simulated

annealing (SA), local search, and threshold accepting (TA) as particular formulations. The

contributions from this research focus on two areas: first, a new method of proving

asymptotic convergence of stochastic hill climbing algorithms is presented, that relaxes the

sufficient conditions found in the literature. This result creates a large body of convergent

stochastic hill climbing algorithms, where only SA existed previously. Second, empirical

tests of the performance of various GHC formulations are conducted on specific problem

classes. These tests study which probability distributions enhance the GHC algorithm's
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finite-time performance (in terms of solution quality versus algorithm execution time) on

three selected problems, including a flexible assembly system design (FASD) problem (a

Hamiltonian path problem), a generic configuration space problem, and an Air Force

manufacturing process design problem.

7.1.1 Knowledge of the Optimal Objective Function Value

For some discrete optimization problems, the globally optimal objective function

value is known, and the goal is to identify an associated optimal solution. Theorems 3.1

and 3.2 show that when co, is known, then any acceptance distribution function that

satisfies (3.1), Theorem 3.1 (c), and (3.6) is sufficient for asymptotic convergence to the

set of globally optimal solutions. Therefore, the class of GHC algorithms presented in

Chapter 3, provides flexibility in selecting the acceptance distribution while maintaining

convergence properties to the set of globally optimal solutions.

One example is the discrete event simulation problem ACCESSIBILITY discussed

by Yicesan and Jacobson [1996], where the goal is to identify a sequence of events (a

solution) that enables a simulation model to terminate in a known state; the objective

function value of this state is defined to be zero. For problems where the optimal

objective function value is not known, an estimate of cPt is sufficient to execute the GHC

algorithm class defined in Chapter 3. The GHC algorithm is initiated using the co,

estimate, and the estimate is updated as the algorithm progresses--see Bohachevsky et al.

[1986]. This approach is being used to optimize an Air Force manufacturing process

design problem (Walker [1992]).
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7.1.2 Convergence Using Linear Algebra

The theorems in Chapter 4 provide a proof of convergence for a general GHC

algorithm, that does not require knowledge of the optimal objective function value nor the

reversibility condition. The proof is based on a perturbation theory developed for

problems in linear algebra. However, these theorems imply that in general, it is very

difficult to prove asymptotic convergence of a stochastic hill climbing algorithm by using

linear algebra techniques, unless very stringent conditions (e.g., asymptotic boundedness

of the norm of a transition matrix generalized inverse, or asymptotic nonsingularity of the

transition matrix), are met.

7.1.3 General Proof of Convergence

Theorem 5.2's proof of convergence of the GHC algorithm, provides the most

significant theoretical contribution of this dissertation. The sufficient conditions of

Theorem 5.2 represent a relaxation of the most general sufficient conditions found in the

literature (Anily and Federgruen, [1987]). The principal shortcoming of Theorem 5.2 is

that in practice, the conditions would be difficult to check for problems with large solution

space cardinalities. Two current research issues are to determine if the conditions of

Theorem 5.2 are also necessary, and if these conditions can be reformulated or further

relaxed, in order to make them easier to verify. This is further discussed in Section 7.2.

7.1.4 Computational Results

Experiments on the FASD problem, the generic configuration space problem, and

the Air Force manufacturing problem, suggest that relationships do exist between the
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selected GHC algorithm formulations and finite-time GHC algorithm performance. SA

performed well on all three problems, and its performance was relatively insensitive to

changes in its parameter values. The Monte Carlo formulation performed very well on the

generic configuration space problem, yet performed poorly on the other two. For the

FASD problem, TA was much more sensitive to parameter tuning than was SA. The

Weibull formulation performed better for the Air Force and generic configuration space

problems when the shape parameter a was strictly less than one; conversely, a values

strictly greater than one worked better for the FASD problem. (Note that when a is equal

to one, then the Weibull formulation is equivalent to SA).

Additional research is necessary to assess how the five GHC algorithm formulations

perform on generic configuration spaces that exhibit more structure than the randomly

generated configuration spaces used for this dissertation. This research would determine

which GHC algorithm formulation and what neighborhood definition would provide the

best finite-time performance on each type of generic configuration space. Additional

research would then extrapolate the results to problem classes in the literature possessing

characteristics similar to those of the generic configuration space problems. The goal is to

provide the practitioner with specific recommendations for a GHC formulation, associated

parameter values (subject to scaling), and a neighborhood definition, that would give the

best finite-time performance for a given discrete optimization problem.
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7.2 Additional Extensions

A key limitation to the theorems of Chapters 4 and 5 is the difficulty of checking the

sufficient conditions for problems with large solution space cardinalities. One way to

address this difficulty would be to develop a way to scale a small (Q, X, c) problem

(where the conditions can be easily checked) to a similar, but much larger-sized problem.

Then, an algorithm with known asymptotic convergence properties for the small problem

could be presumed to exhibit similar convergence properties for the larger problem. With

this approach, one could derive bounds for the matrix norms of Chapter 4, or bounds for

the equilibrium probabilities 6j (k), j c L, for the Theorems of Chapter 5.

An implication from Lemma 4.2 is that, for a given GHC algorithm formulation, a

relationship exists between the number of local optima and the rate that the determinant of

the matrix Q(k) approaches zero. If this relationship could be quantified, the result may be

useful for developing a bound for the rate at which hill climbing transition probabilities

must approach zero.

The theorems of Chapter 5 lend themselves to extensions in several key areas. For

the first extension, recall that the Theorem 5.2 conditions (e) - (g) require that every path

probability (for solutions in (L u G) ) be checked. Instead, condition (e) can be relaxed to

consider the sum (over k) of the probabilities of only the most difficult path (i.e., the path

of lowest probability from any solution j E L to any solution i E (L u G)). Similarly,

conditions (f) and (g) can be relaxed to consider only the maximal path probability (i.e.,

the easiest path), instead of considering the probabilities of all paths.
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A second extension is to derive necessary conditions for Theorem 5.2. If

conditions (e) - (g) should prove to be both sufficient and necessary, then Theorem 5.2

would entirely subsume Anily and Federgruen's [1987] result.

A final extension is to relax the need to know the equilibrium probabilities 8, (k),

for all j c L and all k. However, if this relaxation is infeasible, then an analysis of

conditions (e) and (g) may provide implications on the rate that 5j(k) must approach

zero as k grows large, for all j c L. This in turn would provide a link between finite-time

performance and convergence rates.

Research is needed to assess the best neighborhood size for a given problem.

Equations (5.1) and (5.2) define path probabilities in terms of the product of transition

probabilities between sets of neighboring solutions. Research is needed to assess whether

path probabilities and neighborhood size are related, and whether a bound on the best

neighborhood size could be derived from these equations and Theorem 5.2.

A final research topic is to show how the tabu search (TS) heuristic (Glover

[1994]) can be formulated as a GHC algorithm, and to derive conditions under which TS

will asymptotically converge to the set of optimal solutions. Note that probabilistic TS

can be formulated to resemble SA (see, e.g., Faigle and Kern [1992]). Since SA is a GHC

algorithm, hence the probabilistic TS formulation is a GHC algorithm. The principal

challenge is to show that the most general characteristics of TS, including short term

memory, long term memory, and aspiration criteria, all fall within the GHC rubric. If so,

then TS could claim the same asymptotic optimality distinction enjoyed by SA.
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